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Abstract

Background: COVID-19 has spread all around the world. Italy is one of the worst affected countries in Europe.
Although there is a trend of relief, the epidemic situation hasn’t stabilized yet. This study aims to investigate the
dynamics of the disease spread in Italy and provide some suggestions on containing the epidemic.

Methods: We compared Italy’s status at the outbreak stage and control measures with Guangdong Province in China
by data observation and analysis. A modified autonomous SEIR model was used to study the COVID-19 epidemic and
transmission potential during the early stage of the outbreak in Italy. We also utilized a time-dependent dynamic
model to study the future disease dynamics in Italy. The impact of various non-pharmaceutical control measures on
epidemic was investigated through uncertainty and sensitivity analyses.

Results: The comparison of specific measures implemented in the two places and the time when the measures were
initiated shows that the initial prevention and control actions in Italy were not sufficiently timely and effective. We
estimated parameter values based on available cumulative data and calculated the basic reproduction number to be
4.32 before the national lockdown in Italy. Based on the estimated parameter values, we performed numerical
simulations to predict the epidemic trend and evaluate the impact of contact limitation, detection and diagnosis, and
individual behavior change due to media coverage on the epidemic.

Conclusions: Italy was in a severe epidemic status and the control measures were not sufficiently timely and
effective in the beginning. Non-pharmaceutical interventions, including contact restrictions and improvement of case
recognition, play an important role in containing the COVID-19 epidemic. The effect of individual behavior changes
due to media update of the outbreak cannot be ignored. For policy-makers, early and strict blockade measures, fast
detection and improving media publicity are key to containing the epidemic.
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Background
Six types of coronavirus have been found to be capa-
ble of causing human infections [1]. Four of them are
not highly pathogenic, typically causing cold symptoms in
immunocompetent individuals, while the other two types,
the severe acute respiratory syndrome (SARS) and the
Middle East respiratory syndrome (MERS), can result in
severe respiratory illness and fatalities [2–4]. In late 2019,
a novel coronavirus COVID-19, which turns out to be
more infectious and can survive higher temperature than
SARS [5], has been identified as the pathogen of an ongo-
ing pandemic. This virus has spread to many countries
in the world [6–9]. By May 31, 2020, more than 489 921
confirmed cases due to COVID-19 had been reported in
Eastern Mediterranean [10], Italy is one of the most hit
countries with more than 232 664 confirmed cases, which
account for 47% of reported cases in Eastern Mediter-
ranean. Although there is a trend of relief in Italy but the
situation remains unstable. Control measures have been
implemented in Italy aiming to contain the outbreak and
the time-line of the changes of control strategy in Italy is
shown in Fig. 1a.
In the course of dealing with the worldwide outbreak

crisis, mathematical models have played an important role
in providing policymakers with timely and crucial epi-
demiological information. Many models have been devel-
oped, for instance, using the transmission model of SARS
[11, 12] to investigate the spread of SARS, the molecu-
lar SARS model to understand its molecular structure for
biochemical function and drug design [13], and animal
models ofMERS to study how disease passes from animals
to humans [14, 15]. The media impact models illustrate
how social media influences the propagation of SARS [16].
Mathematical models have also been developed to study
the transmission of COVID-19 in response to this cur-
rent crisis [17–20]. For example, He et al. have developed
a discrete-time stochastic epidemic model with binomial
distributions to study the transmission of COVID-19 [21].
Tang et al. used a deterministic compartmental model to
investigate the COVID-19 epidemic in the mainland of
China, the Guangdong province of China, and Republic
of Korea [22, 23]. The control measures and the timings
of initiation in China might provide some suggestions
to other countries [24]. Fang et al. adopted the model
of susceptible-exposed-infectious-recovered (SEIR) with a
data-driven analysis to study the effectiveness of govern-
ment interventions in China [25].
What’s the transmission dynamics of the COVID-19

and what is the impact of non-pharmaceutical control
measures on the COVID-19 epidemic in Italy? In order
to address the above problems in more detail, we choose
Guangdong Province (the most developed province in
China, and the population is nearly twice that of Italy [26,
27]) for comparative study to reveal the timeliness and

effectiveness of the comprehensive prevention and control
strategies. In this paper, we compare the strategies in the
two places by analyzing their specific control measures,
the change of cumulative cases, new cases, prevalence
ratio and cure ratio, and further reveal the epidemic sit-
uation in the world and Europe through the observation
and analysis of cumulative confirmed cases. We develop a
modified autonomous SEIR model to investigate the early
transmission dynamic in Italy. Considering the continuous
effects of prevention actions, we incorporate piecewise
functions for the contact and diagnosis rate into previ-
ous autonomous model and develop a time-dependent
dynamic model. We assess the impact of the control mea-
sure’s delayed effect, the decrease rate in the contact rate,
the diagnosis rate under different control intensity and
the strength of the public’s awareness by uncertainty and
sensitivity analyses. We also predict the peak time and
number of cases under various measures. At last, based on
parameter estimates we evaluate the prediction by fitting
the model to the latest data up to May 31, 2020.

Methods
Collection of cases data
Weobtained data of confirmed COVID-19 cases that were
reported in Guangdong province, Italy and other places
in the world from the Health Commission of Guangdong
Province, the Ministry of Health of Italy, and the World
Health Organization [28–31]. The data include infected
cases in the world and Europe since January 26 to March
12, 2020, the cumulative confirmed cases, newly reported
cases, death cases, and recovered cases in Italy from Jan-
uary 30 to March 13, 2020 and in Guangdong from Jan-
uary 19 to February 26, 2020. The number of cumulative
confirmed cases in Italy was 2 between January 30 and
February 5, 2020, and was 3 from February 5 to February
19, 2020. The numbers of cumulative death and recovered
cases were 0 from January 30 to February 19, 2020. We
exclude the data in these periods and will focus on the Ital-
ian data between February 20 and March 13 because this
is the early stage of the Italian outbreak , which allows us
to compare the effectiveness of the prevention and con-
trol measures used in Italy and Guangdong by analysis of
those datasets.

Time-line of control measures
In Fig. 1, we select February 20 as the first day when there
were 4 cumulative confirmed cases in Italy, and January
19 as the first day when Guangdong had one cumula-
tive confirmed case. On February 28 Italy closed schools
in Lombardy, the most serious epidemic area, when the
number of cumulative confirmed cases was already 650
(Fig. 1a). This number is similar to the confirmed cases
(i.e. 683) in Guangdong on February 2. In comparison, the
Guangdong government took “Seven Measures” policy
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(e.g. blockade of unnecessary public places) on the third
day (January 21) to prevent the spread of the epidemic
and shut down all schools on January 28, when there were
only 241 cumulative confirmed cases (Fig. 1b). Therefore,
Italy closed schools about 5 days (January 28 − February
2) later than Guangdong. In Fig. 1c we see that the number
of cumulative cases has already exceeded 10 thousand in
Italy, however, the newly confirmed cases in Guangdong
began to decline since the 37th day and reached the peak
of cumulative cases at only 1347 (Fig. 1d). In summary, it
took 14 days for Guangdong’s reported cases to decline
since its cumulative confirmed cases exceeded 1000.

Model
In the early stage of the epidemic in Italy, the govern-
ment did not take many prevention measures across the
country. Thus, to study the epidemic of this stage, we
extend the classical deterministic susceptible-exposed-
infectious-removed (SEIR) epidemic model by dividing
the population into susceptible (S), exposed (E), symp-
tomatic/asymptomatic infected (I/A), confirmed (H)
and recovered (R) compartments. The susceptible and
exposed populations are further partitioned into quaran-
tined susceptible

(
Sq

)
and quarantined suspected individ-

uals
(
Eq

)
. Based on the previous research [22], we adopt

an autonomous model to study the early stage of the out-
break.We assume that the individuals exposed to the virus
are quarantined with a proportion q by contact tracing. If
the quarantined individuals are successfully infected, they
will move to Eq compartment, otherwise they move to
the Sq compartment. The individuals who exposed to the
virus but were missed in the contact tracing with rate 1−q
can either move to the compartment E or still stay in com-
partment S, depending on whether they are infected or
not. We assume that the successful transmission probabil-
ity is β and the contact rate is c. The infected individuals
can be detected and then isolated at a rate of δI or move
to the compartment R at the rate of γI due to recovery.
The death rate of the infectious individuals with symp-
toms I and the isolated infected individualsH is α.We also
assume that the asymptomatic infectious is neither dead
nor hospitalized. With these assumptions the model can
be described by

dS
dt = − (βc + cq(1 − β)) S (I+θA)

N + λSq,
dE
dt = βc(1 − q)S (I+θA)

N − σE,
dI
dt = σρE − (δI + α + γI) I,
dA
dt = σ(1 − ρ)E − γAA,
dSq
dt = (1 − β)cqS (I+θA)

N − λSq,
dEq
dt = βcqS (I+θA)

N − δqEq,
dH
dt = δI I + δqEq − (α + γH)H ,
dR
dt = γI I + γAA + γHH .

(1)

The more detailed definitions of variables and parame-
ters for model (1) are provided in Table 1. As the popula-
tion size is much larger than the size of the outbreak, i.e.
S(t)/N ≈ 1, the basic reproductive number R0 of model
(1) is given by the following formula by utilizing the next
generation matrix [32].

R0 = βρc(1 − q)
δI + α + γI

+ β(1 − ρ)cθ(1 − q)
γA

.

Time-dependentmodel
The above model will be used to study the early stage of
the outbreak. However, with a series of prevention and
control measures being implemented by the government,
the autonomous model needs to be modified. Because of
the difference before and after the implementation of con-
trol measures, piecewise functions of the contact rate and
diagnosis rate are introduced to the autonomous model.
The contact rate is a constant in the autonomous model,

i.e. the average number of susceptible individuals that an
exposed people can contact without any control mea-
sures in a unit time. As the action of regional or national
lockdown came into effect, people’s contact will gradu-
ally decrease. Thus, we assume that the contact rate is an
exponential decreasing function of time t after the gov-
ernment has taken the control measures. The contact rate
c(t) is assumed to take the following form:

c(t) =
{
c0, t ≤ t∗ + τ ,
(c0 − cb) e−r1(t−t∗−τ) + cb, t > t∗ + τ . (2)

Here c0 denotes the contact rate at the initial time with-
out control measures, cb denotes the minimum contact
rate under the current control strategies (cb < c0). Clearly,
c(0) = c0, lim

t→∞ c(t) = cb. The parameter r1 in the expo-
nential decreasing rate c(t) measures how fast the contact
rate decreases under control measures. The data we used
for fitting started from February 20, 2020 and Italy was
blockaded on March 10, 2020. Thus, we let t∗ = 18. Since
the control measures cannot come into effect immediately
after the implementation, we add a time lag τ which rep-
resents the delayed effect of prevention actions (the earlier
and stricter the implementation actions, the smaller the
τ ).
Similarly, because the efficiency of detection and avail-

ability of medical resources vary, we assume that the diag-
nosis rate is a time-dependent piecewise function rather
than a constant. It is an increasing function when medical
resources are adequate and a decrease function when they
are not. The duration of diagnosis 1/δI(t) is given by the
following form:

1
δI(t)

=
{ 1

δI0
, t ≤ t∗,(
1

δI0
− 1

δIf

)
e−r2(t−t∗) + 1

δIf
, t > t∗, (3)
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Table 1 Estimates of parameters and initial values of variables in
model (1)

Parameters Definition value Source

c Initial contact rate 15 Estimated

β Probability of successful
transmission

0.1334 Estimated

θ Transmission probability
reduction of
asymptomatically infected
individuals

0.1 Estimated

ρ Ratio of symptomatic
infection

0.6 Estimated

q Quarantine rate of
exposed individuals

0.415 Estimated

σ Transition rate of exposed
individuals to the infected
class

1/7 [33]

λ Rate at which the quaran-
tined uninfected contacts
are released

1/14 [22]

δI Transition rate of
symptomatically infected
individuals to the
quarantined infected class

0.2257 Estimated

δq Transition rate of
quarantined exposed
individuals to the
quarantined infected class

0.2 Estimated

γI Recovery rate of
symptomatically infected
individuals

0.02 Estimated

γA Recovery rate of
asymptomatically infected
individuals

0.07 Estimated

γH Recovery rate of
quarantined infected
individuals

0.0239 Estimated

α Disease-induced death
rate

0.013 Estimated

N The total population 6.048 × 107 Data

E(0) Initial exposed population 26 Estimated

I(0) Initial symptomatically
infected population

20 Estimated

A(0) Initial asymptomatically
infected population

5 Estimated

Sq(0) Initial quarantined
susceptible population

51 Estimated

Eq(0) Initial quarantined
exposed population

13 Estimated

H(0) Initial quarantined
infected population

3 Data

R(0) Initial recovered
population

0 Data

where δI0 is the diagnosis rate at the initial time. If the
efficiency of detection is increasing with time t, then
the diagnosis rate δI(t) will increase. The parameter r2

measures how fast the diagnosis rate increases (i.e. the
duration of diagnosis decreases) as more medical equip-
ments or resources become available. The final diagnosis
rate δIf is usually larger than δI0. However, if the med-
ical resource is inadequate, the diagnosis rate δI(t) can
decrease and the final diagnosis rate δIf can be less than
δI0.
According to the basic reproductive number R0, time-

varying contact rate Eq. (2) and diagnosis rate Eq. (3), the
effective reproductive number Rc(t) of time-dependent
model is given by the following formula:

Rc(t) = βρc(t)(1 − q)
δI(t) + α + γI

+ β(1 − ρ)cθ(1 − q)
γA

.

Although the government’s mandatory intervention
plays a major role in epidemic control, people’s behav-
ior changes such as keeping social distancing, wearing
facial masks and washing hands due to media and expert
suggestions cannot be ignored. Hence, the piecewise func-
tion similar to the previous contact rate and diagnosis
rate is applied to the transmission rate β . Considering
that the impact of behavior change on the spread of the
disease is not as great as the government mandatory inter-
vention, the exponential change form is not used. If the
number of reported confirmed cases increases, the public
will enhance self-protection measures. Thus, we assume
that the transmission rate β is inversely proportional
to reported confirmed cases H(t). The time-dependent
transmission rate β(t) takes the following form:

β(t) =
{

β0, if 1
klog(H(t)) > 1,

β0
1

klog(H(t))
(4)

where k represents the indicator measures strength of
people’s awareness of self-prevention. The larger the value
of k, the smaller the transmission rate.

Data fitting with autonomousmodel
According to the total population of Italy and the epidemic
situation on February 20, 2020, we set initial values to be
S(0) = 60 480 000, H(0) = 3 and R(0) = 0. According
to the WHO [33], the incubation period of COVID-19 is
about 7 days. Thus, σ = 1/7. The quarantined individ-
uals were quarantined for 14 days, thus λ = 1/14. We
obtain other unknown parameter values by fitting data on
reported number of cumulative confirmed cases, death
cases and recovery cases from February 20 to March 10
in Italy. We utilized the nonlinear least-square (NLES)
method in Matlab to fit model solution to the real data
sets, as shown in Fig. 2. The estimated parameter values
are listed in Table 1.
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Fig. 2 Fitting of the autonomous model to the data of COVID-19 in Italy from February 20 to March 10. (a) shows the number of cumulative
confirmed cases, (b) shows the number of death cases, and (c) shows the number of recovered cases

Results and discussion
Global epidemics
The global spread of the epidemic has gone through two
stages, as shown in Fig. 3. In the first stage, COVID-19
spread to 22 countries around the world before the end of
January. In this stage, there was a huge deficiency of cogni-
tion about this new coronavirus. In early February, under
severe travel restrictions of a few cities including Wuhan
in China and strict quarantine interventions carried out
by other provinces, the epidemic did not spread swiftly to
more countries and only increased by seven countries in
30 days window period. Nevertheless, in the second phase,
it took only 19 days for the number of infected coun-
tries to ascend rapidly from 29 on February 22 to 114 in
late March. The discrepancy between these two stages is
due to the interventions implemented by China and other
countries.

Data comparison in Italy and Guangdong
According to the World Bank Organization, Italy has
60.48 million people while Guangdong has a population
of 111.69 million. Thus, there are more susceptible people
in Guangdong than in Italy [34]. However, it can be seen
from the data of accumulative cases that it took 19 days for
Guangdong Province to increase from 1 case to more than
1000 cases, while it took only 11 days for Italy to increase
from 4 cases to more than 1000 cases. It illustrates that the
prevention and control tactics of Guangdong Province in

the early stage of the epidemic is more effective than that
of Italy under the condition of similar diagnosis rate.
The ascent and descent of newly confirmed cases are

bound up with the prevalence ratio, cure ratio and pre-
vention and control measures in the two places. When
other conditions are the same, the higher the prevalence
ratio, the higher the cure ratio. The more effective the
interventions, the fewer newly diagnosed patients per day.
Specifically, in Fig. 4 we utilize the ratio of reported cases
to the total population to represent the prevalence ratio.
Because the calculated prevalence ratios are very small,
we multiply by 10 000 for the ease of illustration. Sim-
ilarly, we use the ratio of recovered cases to cumulative
confirmed population to represent the cure ratio. In sum,
we select February 20 as Italy’s 1st day and February
19 as Guangdong’s 1st day, with the x-axis representing
days and y-axis representing the prevalence ratio or cure
ratio. Italian prevalence ratio is much higher than Guang-
dong’s (Fig. 4a). Italy has more than 20 times as many
patients as Guangdong, while Guangdong has nearly twice
as many susceptible populations as Italy. This means that
Italian epidemic state is more serious than Guangdong’s.
In view of the cure ratio (Fig. 4b), we can see that Guang-
dong’s curve is more smooth than Italy, which means that
Guangdong’s cure ratio is more stable than Italy’s.
The data observation and comparison suggest that the

situation of the international epidemic, particularly in
Italy, was urgent. Compared with the epidemic situation
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Fig. 3 The epidemics in Europe and the world. The red bar represents the number of countries with confirmed cases in the world. The yellow bar
represents the number of countries with confirmed cases in Europe

in Guangdong Province, the situation in Italy is relatively
serious due to the lack of timely control measures. Last but
not least, the cure ratio curve (Fig. 4b) shows that medical
resources would be insufficient in Italy.

Parameter estimation
In the early stage of the outbreak in Italy, the probability of
successful transmission was 13.34% (β = 0.1334). There

were 40% asymptomatic infected individuals in infected
population and their ability to infect others was 10% of
those with symptoms (ρ = 0.6, θ = 0.1). The disease-
induced death rate among symptomatic was 1.3% (α =
0.013). Our parameter values are consistent with results
in some other publications: the successful infection rate is
12% in reference [35], the ratio of asymptomatic infections
is 56% in reference [36], and the case-lethal rate among

Fig. 4 The prevalence ratio (a) and cure ratio (b) in Italy and Guangdong. The x-coordinate represents time (days) during the period from Feb 20 to
Mar 13 in Italy and Jan 19 to Feb 10 in Guangdong
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Fig. 5 The prediction of currently confirmed cases (left column) and the effective reproduction number (right column) with different sets of
parameter values (see text). The x axis is time (days) of simulation. (a-b) r1 = 0.03, (c-d) r1 = 0.05, (e-f) r1 = 0.5. The red, blue, green and magenta
lines represent δIf = δI0, δIf = 0.2, δIf = 0.18, δIf = 0.17, respectively

Fig. 6 The prediction of currently confirmed cases (left column) and the effective reproduction number (right column) with different sets of
parameter values (see text). The x axis is time (days) of simulation. (a-b) r2 = 0.05; (c-d) r2 = 0.1, (e-f) r2 = 0.5. The red, blue, green and magenta line
represent r1 = 0.03, cb = 4, r1 = 0.05, cb = 4, r1 = 0.1, cb = 4, r1 = 0.5, cb = 1, respectively
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Table 2 Different control measure intensities and prediction results

Parameter assumption Peak day Maximum confirmed cases

cb = 4, r1 = 0.03

δIf = 0.5, r2 = 0.05, τ = 0 79 1.54 × 105

δIf = 0.5, r2 = 0.05, τ = 5 79 2.42 × 105

δIf = 0.5, r2 = 0.05, τ = 10 80 4.00 × 105

δIf = 0.5 r2 = 0.1 τ = 0 76 1.08 × 105

δIf = 0.5 r2 = 0.1 τ = 5 77 1.86 × 105

δIf = 0.5 r2 = 0.1 τ = 10 77 3.32 × 105

δIf = 0.5 r2 = 0.5 τ = 0 76 1.03 × 104

δIf = 0.5 r2 = 0.5 τ = 5 76 1.75 × 105

δIf = 0.5 r2 = 0.5 τ = 10 77 3.21 × 105

δIf = δI0 r2 = 0.05 τ = 0 144 3.36 × 106

δIf = δI0 r2 = 0.05 τ = 5 144 5.38 × 106

δIf = δI0 r2 = 0.05 τ = 10 144 9.31 × 106

δIf = 0.2 r2 = 0.05 τ = 0 181 8.34 × 106

δIf = 0.2 r2 = 0.05 τ = 5 181 1.29 × 107

δIf = 0.2 r2 = 0.05 τ = 10 181 2.51 × 107

cb = 4, r1 = 0.05

δIf = 0.5, r2 = 0.05 τ = 0 60 5.85 × 104

δIf = 0.5, r2 = 0.05 τ = 5 61 1.05 × 105

δIf = 0.5, r2 = 0.05 τ = 10 63 1.99 × 105

δIf = 0.5 r2 = 0.1 τ = 0 57 4.81 × 104

δIf = 0.5 r2 = 0.1 τ = 5 59 4.81 × 104

δIf = 0.5 r2 = 0.1 τ = 10 61 8.79 × 104

δIf = 0.5 r2 = 0.5 τ = 0 56 1.81 × 105

δIf = δI0 r2 = 0.05 τ = 0 101 2.96 × 105

δIf = δI0 r2 = 0.05 τ = 5 101 5.77 × 105

δIf = δI0 r2 = 0.05 τ = 10 101 1.21 × 106

δIf = 0.2 r2 = 0.05 τ = 0 127 5.11 × 105

δIf = 0.2 r2 = 0.05 τ = 5 127 9.82 × 105

δIf = 0.2 r2 = 0.05 τ = 10 127 2.07 × 106

cb = 4, r1 = 0.1

δIf = 0.5, r2 = 0.05 τ = 0 48 3.12 × 104

δIf = 0.5, r2 = 0.05 τ = 5 52 6.69 × 104

δIf = 0.5, r2 = 0.05 τ = 10 55 1.41 × 105

δIf = 0.5 r2 = 0.1 τ = 0 46 2.85 × 104

δIf = 0.5 r2 = 0.1 τ = 5 50 6.26 × 104

δIf = 0.5 r2 = 0.1 τ = 10 54 1.35 × 105

δIf = 0.5 r2 = 0.5 τ = 0 46 2.75 × 104

δIf = 0.5 r2 = 0.5 τ = 5 49 6.15 × 104

δIf = 0.5 r2 = 0.5 τ = 10 54 1.33 × 105

δIf = δI0 r2 = 0.05 τ = 0 66 5.32 × 104

δIf = δI0 r2 = 0.05 τ = 5 71 1.56 × 105

δIf = δI0 r2 = 0.05 τ = 10 76 4.64 × 105

δIf = 0.2 r2 = 0.05 τ = 0 83 6.78 × 104

δIf = 0.2 r2 = 0.05 τ = 5 88 2.07 × 105

δIf = 0.2 r2 = 0.05 τ = 10 89 6.10 × 105

cb = 1, r1 = 0.5

δIf = 0.5, r2 = 0.05 τ = 0 46 2.61 × 104

δIf = 0.5, r2 = 0.05 τ = 5 50 6.00 × 104

δIf = 0.5, r2 = 0.05 τ = 10 54 1.34 × 105

δIf = 0.5 r2 = 0.1 τ = 0 44 2.45 × 104

δIf = 0.5 r2 = 0.1 τ = 5 48 5.69 × 104

δIf = 0.5 r2 = 0.1 τ = 10 53 1.28 × 105

δIf = 0.5 r2 = 0.5 τ = 0 43 2.39 × 104

δIf = 0.5 r2 = 0.5 τ = 5 48 5.60 × 104

δIf = 0.5 r2 = 0.5 τ = 10 53 1.27 × 105
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symptomatic is 1.29% in Italy and 1.3% in New York in
references [37, 38]. The initial contact rate c was 15 in
Italy and 10 in Guangdong, China [8]. This also verified
our data comparison analysis that the prevention and con-
trol measures implemented in Italy were not sufficiently
timely and effective comparing with Guangdong.
According to the estimated values of parameters and the

formula of the basic reproductive number, the values of
R0 is 4.3211. It’s close to the result of another publication
(R0 = 4.10 in Italy) [40]. The basic reproduction number
of COVID-19 is higher than that for influenza (1.4 −1.6)
[39] and in comparison with the values of SARS epidemics
(R0 = 4.91) in Beijing in 2003 [41] and MERS (R0 = 3.5 −
6.7) in Jeddah in 2014 [42].

Uncertainty and sensitive analyses
To examine the possible impact of enhanced interven-
tions on COVID-19 epidemic in Italy, using parame-
ter estimates we plotted the predicted current number
of confirmed cases with varying parameters related to

the time-dependent contact rate c(t) and diagnosis rate
δI(t) including τ , cb, r1, δIf , r2 in the model with time-
dependent parameters.
The effect of time lag τ in the contact rate c(t) on

the epidemic of COVID-19 is shown in Table 1. We can
see that the estimated peak value of the number of cur-
rent confirmed cases significantly increases and the peak
time delays 0 - τ days as time lag increases. Earlier and
stricter lockdown implementation leads to earlier peak
time and much lower peak value. For instance, under the
control condition cb = 4, r1 = 0.03, δIf = 0.5, r2 =
0.05, the number of maximum infected cases is 2.42 ×
105 when τ = 5. When τ = 10, the peak value is
4.00× 105, which means that confirmed cases increase by
65% when the time lag increases by 5 days. This suggests
that the earlier and stricter the blockade, the better the
control effect.
Figures 5 and 6 show changes of the disease dynamics

when the diagnosis rate δI(t) is an increasing func-
tion and a decreasing function, respectively. There

Fig. 7 The effect of the public self-protection on the COVID-19 transmission in Italy. The x axis is time (days) of simulation. The red, blue, green and
magenta lines represent β(t) = β0, k = 1/8, k = 1/6, k = 1/5, respectively



Liu et al. Infectious Diseases of Poverty           (2020) 9:130 Page 11 of 13

are in total 72 sets of parameter values, representing
the variation in the intensity of the control measures
implemented.
Figures of the same color in Fig. 5a, c and e show

that improving the efficiency of infection detection can
largely affect the spread of the infection. The simulations
with four different colors in Fig. 5a, c and e show that
when the exponential decreasing rate in the contact rate
increases, the number of confirmed cases will decrease
and the epidemic will peak earlier. For example, under the
control conditions cb = 4, δIf = 0.5, r2 = 0.05, τ = 0,
the estimated accumulated peak value of confirmed cases
decreases by 93% (3.36×106−2.96×105) when the expo-
nential decreasing rate r1 increases by 67% (0.03 −0.05).
In addition, the effective reproduction number R(t) will
decrease eventually to less than 1 as the control intensities
increase, see Fig. 5b, d and f. Therefore, the stronger the
control intensity, the faster the infection goes extinct.
During the outbreak of COVID-19, the number of infec-

tions rises, leading to the shortage of medical resources.
The detection rate may be smaller. We use δIf ≤ δI0
to describe this situation in which δI(t) decreases. The
magenta and green curves in Fig. 6a, c and e show that
the maximum level of the infection will increase when the
minimum diagnosis rate is 0.18 or 0.17. If the minimum
diagnosis rate is 0.2 or the diagnosis rate does not increase,
the blue and red curves in Fig. 6a, c and e show that
the number of confirmed cases is much higher than that
in Fig. 5 because of shortage in medical resources. The

detailed predicted results of the time when the infection
reaches the peak and the maximum number of confirmed
cases under different parameter sets are shown in Table
2. These simulations suggest that the effects of prevention
and control strategies on epidemic variation are important
and huge.
As shown in Fig. 7, we evaluate population’s response

to the outbreak at four different levels by setting k =
1/8, 1/6, 1/5 in Eq. (4) and β(t) = β0. The values of other
parameters are the same as those in Table 1. The red curve
shows that the cumulative confirmed cases will keep rising
and increasing the parameter k clearly reduce the num-
ber of cumulative confirmed cases and can be effective in
slowing the overall disease progression trend. This indi-
cates that media news coverage on the status of disease
could help improve people’s self-protection awareness,
leading to a better control of the disease outbreak.
Under different parameter settings, we made predic-

tions of the peak time and cases based on the data from
February 20 to March 10. The data in later time show that
on April 20th the number of current confirmed cases in
Italy peaked at 108 237. This is close to one of our predic-
tions: the number of current confirmed cases reaches the
peak value 127 000 and the peak time is 53 days (i.e., April
26). Furthermore, using the parameters values in Table
2, we estimated the parameters in the time-dependent
model and fit the cumulative reported cases of Italy by the
NLES method (Fig. 8). We obtain the parameter estimates
cb = 2.252, r1 = 0.0242, δIf = 0.2257, r2 = 0.0189, τ =

Fig. 8 Fitting of the time-dependent model to very recent data on the cumulative confirmed cases from February 31 to May 31. The blue points are
data and the red line is the fitting result
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12.35. The estimation results show that the decrease in
the contact rate is very large, suggesting that Italian recent
control measures have played a great role in disease con-
trol. The value of the minimum contact rate indicates the
strictness of social distancing control and the value of the
diagnosis rate determines whether medical resources are
sufficient.

Conclusions
Italy had a very serious epidemic situation before the
national lockdown (i.e., March 10), with the basic repro-
duction number was 4.32. The control measures at
that time, including the blockade of schools and medi-
cal support, were not sufficiently timely and effectively.
Non-pharmaceutical compulsory interventions including
contact restrictions (e.g., blockade and quarantine) and
improvement of case recognition (i.e., diagnosis rate) play
an important role in containing the COVID-19 epidemic.
Besides, the effect of individuals behavior change (e.g.,
keeping social distancing and wearing masks) due to
media coverage of the dynamic situation of the epidemic
cannot be ignored.
It follows from the data observation and analyses that

Italy closed schools at least five days later than Guang-
dong and the prevalence ratio in Italy is more than 20
times as Guangdong although Italy has fewer suscepti-
ble people. The cure ratio curve reveals that there is
also a shortage of medical equipments and resources in
Italy. Besides, from the global epidemics situation analy-
sis China’s timely lockdown of Wuhan city had provided
about 30-day window period, during which (from Jan-
uary 24 to February 22) there were only 7 newly infected
countries.
The key parameters including delayed effect of preven-

tion actions τ , the exponential decreasing rate of contact
rate r1, the final diagnosis rate δIf , the individual behaviour
change constant k could significantly affect the outbreak
of epidemic COVID-19. In particular, when the estimated
peak value of infected cases was controlled at around
108 350 (i.e., cb = 4, r1 = 0.03, δIf = 0.5, r2 = 0.1, τ = 0),
it increased by 72% (108 350 −186 420) if the delayed
effect of prevention actions τ increases by 5 days; or
decreased by 56% (108 350 −48 068) if the exponential
decreasing rate of contact rate r1 increased to 0.05; or
decreased by 39% (108 350 −66 080) if the final diagnosis
rate δIf increased by 16%.
This study presents a novel methodology through using

data analysis and embedding the piecewise continuous
function of contact rate, diagnosis rate and individ-
ual behavior changes (media reports impact) into the
autonomous SEIR-type model, showed that combining
data analysis with a mathematical model are beneficial
for describing the dynamics of the epidemic from the

early stage and quantifying the specific effect of non-
pharmaceutical measures including lockdown, medical
support and media reports on COVID-19. It demon-
strated that these control measures affect the accumulated
number of hospital notifications by reducing the contact
rate (increasing the exponential decreasing rate of contact
rate) and the transmission rate (increasing the individual
behaviour change constant), and also increasing the diag-
nosis rate. All these results confirmed the crucial role of
governments in implementing early and strict blockade
measures and in reducing detection time, and the impor-
tance of the media publicity to improve the public aware-
ness of self-protection. Therefore, for mitigating COVID-
19 epidemic, it is recommended that enforcing isolation
and blockade orders, strengthen the supplement of med-
ical resources, and improving the public self-protection
awareness should be implemented timely and effectively.
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