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Abstract 

Background: Coronaviruses can be isolated from bats, civets, pangolins, birds and other wild animals. As an animal‑
origin pathogen, coronavirus can cross species barrier and cause pandemic in humans. In this study, a deep learning 
model for early prediction of pandemic risk was proposed based on the sequences of viral genomes.

Methods: A total of 3257 genomes were downloaded from the Coronavirus Genome Resource Library. We present 
a deep learning model of cross‑species coronavirus infection that combines a bidirectional gated recurrent unit 
network with a one‑dimensional convolution. The genome sequence of animal‑origin coronavirus was directly input 
to extract features and predict pandemic risk. The best performances were explored with the use of pre‑trained DNA 
vector and attention mechanism. The area under the receiver operating characteristic curve (AUROC) and the area 
under precision‑recall curve (AUPR) were used to evaluate the predictive models.

Results: The six specific models achieved good performances for the corresponding virus groups (1 for AUROC and 1 
for AUPR). The general model with pre‑training vector and attention mechanism provided excellent predictions for all 
virus groups (1 for AUROC and 1 for AUPR) while those without pre‑training vector or attention mechanism had obvi‑
ously reduction of performance (about 5–25%). Re‑training experiments showed that the general model has good 
capabilities of transfer learning (average for six groups: 0.968 for AUROC and 0.942 for AUPR) and should give reason‑
able prediction for potential pathogen of next pandemic. The artificial negative data with the replacement of the 
coding region of the spike protein were also predicted correctly (100% accuracy). With the application of the Python 
programming language, an easy‑to‑use tool was created to implements our predictor.

Conclusions: Robust deep learning model with pre‑training vector and attention mechanism mastered the features 
from the whole genomes of animal‑origin coronaviruses and could predict the risk of cross‑species infection for early 
warning of next pandemic.
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Background
Coronaviruses (CoV) are a group of RNA viruses whose 
linear, positive-sense, single-stranded RNA genomes are 
the longest among the known RNA viruses. The Interna-
tional Committee on Taxonomy of Viruses (ICTV) clas-
sifies coronaviruses into α, β, γ, and δ genera [1]. Seven 
types of coronaviruses that infect humans have been 
identified: human coronavirus (HCoV) 229E, OC43, 
NL63, and HKU1; severe acute respiratory syndrome 
coronavirus (SARS-CoV and SARS-CoV-2); and Middle 
East respiratory syndrome coronavirus (MERS-CoV). 
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SARS-CoV, MERS-CoV, and SARS-CoV-2 are highly con-
tagious and have caused three epidemics or pandemics 
this century [2, 3].

The coronaviruses responsible for pandemics are ani-
mal-origin pathogens transmitted to humans through 
the intermediate host [4–7]. The intermediate hosts of 
SARS-CoV and MERS-CoV were civets and dromedar-
ies, respectively [8, 9]. The direct host of SARS-Cov-2 is 
not clear but is closely related to bats and pangolins [10, 
11]. Coronaviruses are capable of cross-species infection 
through accumulation of point mutation and recom-
bination of their RNA genome [2]. All coronaviruses 
responsible for epidemics or pandemics come from wild 
animals, are spread through respiratory droplets and 
close contact, and can cause severe pneumonia. Every 
outbreak of the coronavirus with the novelty of viral anti-
gens has caused severe economic and societal damage. 
Consequently, we urgently need to develop a prediction 
model of the pandemic risk for human coronavirus infec-
tion and improve the prevention and control of infectious 
diseases for next pandemics.

The spike protein on the surface of virus particle is the 
most important surface membrane protein of coronavi-
ruses, being responsible for their binding to the host cell 
membrane receptor and membrane fusion. It plays a very 
important role in cross-species infection [12]. The adap-
tation of other viral proteins to the internal environment 
of new host also affects viral replication [13]. These facts 
need to be considered when modeling viral infection, 
and artificial genome data should be used to increase the 
weight of the spike protein and build a robust model.

Deep learning developed rapidly in recent years, which 
has triggered changes in application fields such as speech 
recognition, image understanding, natural language pro-
cessing (NLP). A recurrent neural network (RNN) is a 
neural network used to process sequence data and has 
the ability to capture the inherent characteristics of time 
series [14]. The original RNN model is affected by prob-
lems of gradient disappearance or explosion, proposing 
the long short-term memory (LSTM) network and gated 
recurrent unit (GRU) network, respectively [15, 16]. At 
present, RNN and its variants have achieved great success 
in speech recognition and text translation [17]. Because 
genomes are also long chains comprising four alphabet 
units, RNNs can learn and extract the features of biologi-
cal sequences. A bidirectional GRU was constructed to 
predict the binding preference of RNA and protein [18]. 
An RNN combined with an attention mechanism to pre-
dict enhancer-promoter interactions in human genes and 
achieved good performance [19].

The pandemic risk for animal-origin coronavirus is 
closely related to variations within the viral genome. 
We used the natural language model to construct a 

prediction model based on the phenotype of infection, 
named Coronavirus Cross-species Infection with Deep 
Learning (CCSI-DL), which models and analyzes six 
types of coronaviruses. It uses a one-dimensional (1D) 
convolution to extract the local features of the sequences, 
a GRU network to extract the long-term dependence of 
the sequence in two directions, and an enhanced atten-
tion mechanism to capture the weight of key features 
[19]. The model predicts the cross-species infection risk 
of animal-origin coronaviruses with well performance 
and can be used for early warning of pandemic risk.

Methods
Initial virus data
Coronavirus sequences were accessed from the Corona-
virus Genome Resource Library (https:// ngdc. cncb. ac. cn/ 
ncov/) on June 30, 2020, including those of MERS-CoV, 
HCoV-OC43, HCoV-NL63, HCoV-229E, HCoV-HKU1, 
SARS-CoV (combined SARS-CoV-1 and SARS-CoV-2) 
genome sequences and animal-origin coronaviruses [20]. 
A total of 3257 genomes were downloaded and human- 
and animal-origin coronaviruses were regarded as posi-
tive and negative samples, respectively (see Additional 
file  1). Using the K-nearest neighbors algorithm (k = 5), 
the negative samples (animal-origin coronaviruses) 
were divided according to the six types of positive sam-
ples (Quad-nucleotide frequency as features; Six human 
groups: MERS-CoV, HCoV-OC43, HCoV-NL63, HCoV-
229E, HCoV-HKU1, SARS-CoV), then combined with 
the corresponding positive samples to form six types of 
coronavirus data sets (see Additional file 2).

Artificial negative data
The spike protein is the most important surface mem-
brane protein of coronaviruses and is responsible for 
their binding to the receptor of host cell, which plays the 
key role in transmission efficiency and host range [13]. If 
the spike protein of positive virus is replaced with that of 
negative virus (see Additional file  3), the positive virus 
should significantly decrease transmission efficiency and 
its phenotype label should be changed [13]. According 
to the strategy of artificial recombination in silicon, the 
generated sequences based on the replacement of the 
coding region of the spike protein for the initial posi-
tive sample were added to the negative sample data set 
(see Additional file  4). During training, the weights of 
the spike protein were further increased in the model, 
thereby improving the prediction accuracy with robust-
ness. Considering the synergistic effect of other viral 
proteins on cross-species infection, this approach is con-
sistent with biological studies of host adaption [13]. After 
the addition of artificial negative data and the balance of 
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sample number (direct duplication), the final dataset of 
six viruses was shown in Table 1.

Framework of the CCSI‑DL model
The CCSI-DL model consists of five main steps: genome 
segmentation, sequence embedding, 1D convolution, the 
RNN, and the attention mechanism. Figure 1 shows the 
structure of the proposed model in the paper.

Sequence segmentation and embedding
Genome sequence of coronavirus cannot be directly 
used for model construction. The method of traditional 
sequence conversion uses one-hot vectors to encode 
DNA sequence fragments. Because the information 
between each vector is independent, the model can-
not capture the hidden associated information in the 
sequence and is therefore unsuitable for deep learning 
algorithms. To avoid this problem, we used the DNA 
vector obtained by the dna2vec method [21] as the pre-
training vector. The dna2vec method is based on the 
word2vec word embedding model [22], which is the 
classical text representation method in the NLP field.

The dna2vec method uses DNA sequence fragments 
of length k (k-mers) as words. Its purpose is to calcu-
late the distributed representation of DNA fragments 
and capture the associated information in the original 
sequence. Based on the pre-training vector, the model 
uses fine-tuning strategies in the embedding layer 
to improve the performance of the model [23]. In the 
paper, we chose k = 2 and an embedding dimension of 
8 [19].

The length of the original genome sequence of the 
coronavirus is about 27–32  kb. We took a two-base 
RNA fragment as a basic word and preprocessed the 
original genome sequence to obtain a numerical index 
sequence. To facilitate model input, the obtained index 
sequence was rounded to a length of 30 kb and divided 
into 10 equal segments (3  k for each segment). The 
embedding layer of the model performed embedding of 
the input sequence based on the pre-trained vector. To 
improve the performance of the model, the weight of 
the embedding layer was set to be trainable so that the 
DNA vector could be fine-tuned according to the train-
ing data of coronavirus genome.

One‑dimensional convolution
The CCSI-DL model combines a 1D convolution with 
an RNN for feature extraction. A 1D convolution is 
firstly used to capture the local correlation features in 
the sequence and then input into the bidirectional GRU 
network to extract the global correlation features. The 

1D convolution slides along the data in one dimen-
sion and extracts features from shorter segments in the 
genome sequence.

For computer vision tasks, using a deeper 2D convo-
lution model can produce a more accurate classification 
[24], but increasing the network depth does not neces-
sarily improve performance for 1D data [25]. The 1D 
convolutional layer is used to extract the local features 
of the sequence after embedding. We set the number of 
convolution kernels (filters) to 4 and the length of convo-
lution kernels (kernel_size) to 50, and used the rectified 
linear activation function (ReLU). The ReLU can give the 
sparsity for the network and the pooling layer can reduce 
the computational complexity. The maximum pooling 
layer was connected after the convolutional layer to fur-
ther reduce the sequence length, increase the calculation 
speed, and avoid overfitting.

Recurrent neural network
The recurrent unit used in the RNN was the GRU net-
work, which is improved by the LSTM network and can 
also solve problems such as long-term memory and gra-
dients in back propagation [26]. The GRU removes the 
cell state from the LSTM network and retains two gated 
units (the update gate and the rest gate), which simpli-
fies the LSTM structure and reduces training complexity 
while achieving a similar experimental effect.

To capture characteristics of biology sequences ade-
quately, a bidirectional GRU architecture was used (two 
unidirectional GRU layers, one forward and one back-
ward). This architecture connects the forward hidden 
state and the reverse hidden state, enabling the output 
result to simultaneously account for the sequence corre-
lation of the forward and backward states. The output of 
a single GRU layer was set to 50 dimensions, and the two 
opposing outputs were connected to obtain a total output 
dimension of 100.

Table 1 Genomic data for six coronaviruses

Positive samples, n Negative 
samples, n

MERS‑CoV 1044 1138

HCoV‑OC43 482 534

HCoV‑NL63 240 262

HCoV‑229E 240 262

HCoV‑HKU1 390 387

SARS‑CoV 638 587
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Attention mechanism
Following the bidirectional GRU layer, the attention 
layer is used to learn the weights of features. Inspired 
by human attention, its purpose is to focus attention on 
a specific part based on a large amount of information. 
The attention mechanism was first applied in the field of 
image processing, then introduced into the NLP field for 
machine translation in 2015 [27] and extended to vari-
ous other NLP tasks, resulting in many improvements 
[28]. Assuming that the features in the sequence are not 
equally important to the prediction, using the attention 
mechanism can improve the contribution of key features 
to the prediction. The attention mechanism is described 
by the following formulae [19]:

For the ith feature fi output by the previous layer, its 
hidden representation hi is calculated. The importance 
of features is measured by the similarity between hi and 
the context vector hw. The normalized weight αi of each 
feature is obtained by multiplying hw by hi and then using 
the softmax function. The feature vector fi is multiplied 
by the corresponding weight αi and summed to the final 
output vector v used for prediction. Wω, bω, and hω were 
randomly initialized and learned during model training.

hi = tanh(Wωfi + bω)

αi =
exp(hTi hω)∑
iexp(h

T
i hω)

v =

∑

i

αifi

Model training and evaluation
During training, we used a batch size of 24, the cross-
entropy loss function, and the Adam optimization 
algorithm to update the network weights. To avoid over-
fitting, a batch normalization layer and a dropout layer 
(random dropout probability = 0.5) were added after the 
merge layer. After amplification of positive samples, the 
six virus data sets were randomly divided into a train-
ing set (90%) and a test set (10%). The model was trained 
using the training set for 15 rounds, then the effect of the 
model training was evaluated using the test set.

To evaluate the predictive models, we calculated the 
area under the receiver operating characteristic curve 
(AUROC) [29] and the area under precision-recall curve 
(AUPR) [30], both of which are suitable for imbalanced 
data sets. The receiver operating characteristic (ROC) 
curve plots the true positive rate as a function of the 
false positive rate. The closer the AUROC is to 1, the bet-
ter the performance of the model. The ROC curve is not 
affected by the distribution of positive and negative sam-
ples, so AUROC is suitable as an evaluation index for an 
unbalanced binary classification model. The precision-
recall curve plots the precision as a function of the recall, 
reflecting the trade-off between the model’s accuracy in 
identifying positive examples. The closer the AUPR value 
is to 1, the better the performance of the model.

To verify the advantage of pre-trained DNA vector and 
attention mechanism on the performance of CCSI-DL-
specific and CCSI-DL-general, three variant models were 
proposed: (1) CCSI-DL-nopre, in which the embedding 
layer does not use pre-training DNA vectors; (2) CCSI-
DL-onehot, which does not use an embedding layer and 
only uses a one-hot-coded sequence as input; (3) CCSI-
DL-noatt, which does not use the attention layer. The 
same training processes were applied to specific and 

Fig. 1 Flowchart of the deep learning method. The Coronavirus Cross‑species Infection with Deep Learning (CCSI‑DL) model consists of five main 
steps: genome segmentation, sequence embedding, one‑dimensional convolution, the recurrent neural network, and the attention mechanism
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general models: CCSI-DL-spe-nopre, CCSI-DL-spe-one-
hot, CCSI-DL-spe-noatt, CCSI-DL-gen-nopre, CCSI-DL-
gen-onehot, and CCSI-DL-gen-noatt.

Implementation of the prediction tool
We used the Python 3.7.4, tensorflow 2.1.0 and Keras 
2.3.1 to create an easy-to-use tool that implements our 
predictor, which is freely accessible via https:// github. 
com/ kouzh eng/ CCSI- DL and can run in an end-to-end 
way and handle massive data. Users need to prepare the 
query sequences of coronavirus genome in the FASTA 
format, input the name for query file, and set confidence 
parameter (from 0.0 to 1.0) before running the tool. Set-
ting a smaller confidence parameter results in more 
sensitive predictions. A predicted phenotype of pan-
demic risk is labeled “H”, while the label “N” indicates no 
transmission.

Results
Specific model for each virus group
As there are genetic differences in the sequences of the 
six virus types, we created separate prediction mod-
els using the genome data set for each of the six viruses 
(called CCSI-DL-specific) and evaluated the generaliz-
ability of each specific model to other virus groups. The 
AUROC and AUPR values obtained after training the six 
specific models were shown in Table 2. The best results 
(1 for AUROC and 1 for AUPR) were obtained when the 
model was trained and tested using the same group of 
virus data set, while the predictive performances using 
test data sets from different virus groups was reduced 
significantly. The MERS-CoV model achieved well per-
formance for the MERS-CoV data (1 for AUROC and 1 
for AUPR) and bad prediction for the HCoV-HKU1 data 
(0.03 for AUROC and 0.333 for AUPR), the HCoV-NL63 
data (0.335 for AUROC and 0.375 for AUPR). The SARS-
CoV model had excellent performance for the SARS-CoV 
and MERS-CoV data and low prediction for the HCoV-
OC43 data (0.946 for AUROC and 0.887 for AUPR), 

HCoV-NL63 data (0.96 for AUROC and 0.881 for AUPR) 
and HCoV-229E data (0.863 for AUROC and 0.734 for 
AUPR).

General model for all virus groups
Training specific models for six coronavirus data sets is 
time-consuming and has poor generalizability, hence 
we need to build a general model for all virus groups. 
We trained a general model, called CCSI-DL-general, 
by combining the training data of six virus groups and 
was then evaluated for each virus group. The model was 
trained using the mix training data set for 15 rounds, 
then the performance of the general model was evalu-
ated using the test set. As a result, the CCSI-DL-general 
model provided very good predictions for all of virus 
groups with the artificial negative data (1 for AUROC 
and 1 for AUPR).

Advantage of pre‑training vector and attention 
mechanism
As shown in Fig. 2A, B, the performances of three variant 
models of CCSI-DL-specific were not as good as those 
of the original model. Without the use of pre-trained 
DNA vector, the values of AUROC and AUPR for HCoV-
229E and HCoV-HKU1 were obviously decreased (about 
10–20% reduction). With the use of one-hot coding, the 
specific model for MERS-CoV and SARS-CoV achieved 
low performance. Without the use of attention mecha-
nism, the performance for the MERS-CoV model slightly 
reduced while that of the HCoV-229E reduced obviously 
(0.91 for AUROC and 0.837 for AUPR). According to the 
results shown in Fig. 2A, B, it was suggested that the six 
virus models get the best performance with the use of 
pre-trained DNA vector and attention mechanism.

The performance of three variant models of general 
model was shown in Fig.  2C, D. The CCSI-DL-gen-
nopre model had slight reduction of performance for all 
of the six viruses. The CCSI-DL-gen-onehot model had 
obviously reduction of performance for MERS-CoV, 

Table 2 Prediction performance of CCSI‑DL‑specific model for pandemic risk

AUROC area under the receiver operating characteristic curve, AUPR area under precision–recall curve, CCSI-DL coronavirus cross-species infection with deep learning

Train\Test MERS‑CoV HCoV‑OC43 HCoV‑NL63 HCoV‑229E HCoV‑HKU1 SARS‑CoV

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

MERS‑CoV 1 1 0.566 0.474 0.335 0.375 0.503 0.441 0.03 0.333 0.984 0.942

HCoV‑OC43 0.066 0.328 1 1 1 1 0.528 0.454 0.943 0.896 0.331 0.396

HCoV‑NL63 0.262 0.375 1 1 1 1 0.644 0.523 0.895 0.815 0.549 0.488

HCoV‑229E 0.516 0.471 0.917 0.808 0.995 0.995 1 1 0.173 0.366 0.79 0.645

HCoV‑HKU1 0.432 0.436 0.914 0.924 1 1 0.66 0.534 1 1 0.621 0.536

SARS‑CoV 1 1 0.946 0.887 0.96 0.881 0.863 0.734 1 1 1 1

https://github.com/kouzheng/CCSI-DL
https://github.com/kouzheng/CCSI-DL
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HCoV-OC43, SARS-CoV and HCoV-229E. The low per-
formance for HCoV-229E is obvious (0.996 for AUROC 
and 0.967 for AUPR). Without the use of attention mech-
anism, all of the virus groups achieved slightly perfor-
mance reduction except HCoV-229E (0.911 for AUROC 
and 0.875 for AUPR). The CCSI-DL-gen-noatt model had 
poor prediction for HCoV-229E, which only had 0.911 
for AUROC and 0.875 for AUPR. According to the results 
shown in Fig. 2C, D, it was suggested that the CCSI-DL-
general model with the use of pre-trained DNA vector 
and attention mechanism get the best performance.

Advantage of artificial negative data
Compared with the genome sequences of original 
positive data, those of artificial negative data remain 
unchanged except the coding region of the spike pro-
tein. The data constrain for the spike protein is compat-
ible with animal tests, which will increase the weight of 
the spike protein and will benefit for robust prediction. 
To show the advantage of data constrain based on biol-
ogy trials, we used the original virus data to repeat the 
training of CCSI-DL-specific and CCSI-DL-general and 
predict the artificial negative data.

Table  3 shows the predictions of CCSI-DL-specific 
and CCSI-DL-general for the artificial negative data. 
It can be seen that the model trained with the initial 
data of coronavirus genome cannot correctly predict 

the artificial negative data and give positive output 
with thoroughly errors (about 0 for accuracy). Because 
the infection efficiency for the “positive” virus is vastly 
reduced when the encoding region of the spike pro-
tein is replaced by that of the “negative” virus, adding 
artificial data to the original data set for training will 
improve the weight of the spike protein and increase 
the robustness of the model.

Transfer learning ability of general model
The CCSI-DL-general model achieved excellent perfor-
mance as shown above. To determine whether CCSI-DL-
general can achieve good performance using a new data 
set, we fine-tuned the parameters and assessed its trans-
fer learning ability by using a certain virus as the new data 
set (Dnewtrain and Dnewtest) and mixed the genome 
data of the other five viruses as a combined training set 
(Dtrain). The CCSI-DL-general model was pre-trained 
for 15 rounds using Dtrain, trained for 10 rounds using 
Dnewtrain, and evaluated using Dnewtest. The model for 
the evaluation of transfer leering ability was named after 
CCSI-DL-transfer.

As shown in Fig.  3, the performance of CCSI-DL-
transfer was compared with that of CCSI-DL-general. 
The CCSI-DL-transfer model achieved excellent perfor-
mance for HCoV-OC43, HCoV-NL63, HCoV-HKU1 and 
SARS-CoV (almost 1 both for AUROC and AUPR). The 

Fig. 2 Performance of CCSI‑DL‑specific and CCSI‑DL‑general for six virus data sets. A Area under the receiver operating characteristic curve 
(AUROC) and B area under the precision‑recall curve (AUPR) for CCSI‑DL‑specific model after removing pre‑training vector, using one‑hot as input 
and removing the attention mechanism. C AUROC and D AUPR for CCSI‑DL‑general model after removing the pre‑training vector, using one‑hot 
as input and removing the attention mechanism. CCSI-DL coronavirus cross‑species infection with deep learning, spe specific, no pre removing 
pre‑training vector, no att removing the attention mechanism
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MERS-CoV had slight reduction of prediction perfor-
mance (0.993 for AUROC and 0.996 for AUPR). How-
ever, the low performance for HCoV-229E was got with 
0.818 for AUROC and 0.657 for AUPR. The main reason 
for the performance of HCoV-229E is about small num-
ber of virus data and high identity of genome sequence, 
which should be conquered with the increase of genome 
sequences in public database. The excellent performance 
for most coronavirus (average score for six groups: 0.968 
for AUROC and 0.942 for AUPR) proved that the CCSI-
DL-general model can be used as a pre-training model 
for transfer learning and will give the reasonable predic-
tion for next pandemic pathogen.

Discussion
Coronavirus is an animal-origin pathogen that can cause 
disease in humans [31, 32]. A model for phenotype iden-
tification of notorious disease is urgently needed to be 
developed [33, 34]. In the paper, we present a deep learn-
ing model of cross-species coronavirus infection that 

combines a one-dimensional convolutional neural net-
work with a bidirectional gated recurrent unit network. 
This deep learning method strengths the weight of the 
spike protein and provides an effective model for early 
warning of cross-species infections.

Although the spike protein is responsible for their 
binding to the host cell membrane receptor and play the 
key role in the cross-species transmission, the synergis-
tic effect of other viral proteins reported by biological 
studies of host adaption should be considered [13]. The 
one-dimensional convolution was used to extract the 
sequence features of genome sequences and the recur-
rent neural network with the attention mechanism was 
used to build the predictive model. Moreover, artificial 
negative data with genome recombination in the coding 
region of spike protein improve its weight and increase 
the robustness of the model.

The results about six specific models show that they are 
able to learn the sequence features in a single virus data 
set and cannot provide good predictive performances for 
other virus groups. However, it should be noted that the 

Table 3 Performance of CCSI‑DL‑specific and CCSI‑DL‑general against artificial negative data

a Test data were wholly negative sample and the accuracy was selected as an evaluation metric. CCSI-DL coronavirus cross-species infection with deep learning

Modela MERS‑CoV HCoV‑OC43 HCoV‑NL63 HCoV‑229E HCoV‑HKU1 SARS‑CoV

Specific 0.004 0 0 0.033 0 0

General 0 0 0 0 0 0

Fig. 3 Performance of CCSI‑DL‑general model. Performance of the pre‑trained CCSI‑DL‑general model transferred to a new data set. AUROC area 
under the receiver operating characteristic curve, AUPR area under precision–recall curve, CCSI-DL coronavirus cross‑species infection with deep 
learning
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SARS-CoV model and MERS-CoV model provided well 
performance for each other. The similar result is suitable 
for the HCoV-OC43 model and the HCoV-NL63 model. 
The potential reason is that the similar mechanism for 
cross-species infection was employed.

The proposed deep learning method used the pre-
trained DNA vector and attention mechanism to extract 
features of coronavirus genomes. Based on the evalua-
tion of transfer learning and artificial negative data, it 
was proved that the general model is robust and reason-
able. We used the Python programming language to cre-
ate a powerful tool to benefit the surveillance for public 
health. Moreover, we try this tool to predict SARS-Cov-2 
genome data from Brazil, United Kingdom, South Africa, 
and India (Positive sample; Mutant human-origin virus) 
and achieved 100% predictive accuracy.

The length of the genome sequence of the coronavi-
rus is about 27–32 kb. In the paper, the long sequences 
of viral genomes were totally considered and divided into 
ten segments to increase the performance of the predic-
tion model. However, the main limitation of the pro-
posed method in the paper is that the interpretability of 
predictive results was reduced because the convolutional 
method was used to extract features of viral genomes and 
the relation between sequence features and prediction 
results was not obvious. The attention matrix should be 
used to analysis the correlation of ten genome segments. 
The weights of convolution network should be empha-
sized to master the key region in the genome sequences. 
Although the end-to-end model was easy to extract the 
feature and flexible to build the model, the develop-
ment about interpretability of prediction output should 
be considered in the future [35], which will increase the 
understanding of the mechanism about cross-species 
coronavirus infection.

Conclusions
We proposed a CCSI-DL model, which combines a bidi-
rectional GRU with a one-dimensional convolution and 
uses the genome sequence of coronaviruses as direct 
input to predict the pandemic risk of human infection. 
We trained and tested the CSSI-DL model using single- 
and multi-group coronavirus genome data and achieved 
good performances (1 for AUROC and 1 for AUPR). Re-
training experiments showed that the model has good 
transfer learning capabilities and the artificial negative 
data with genome recombination in the coding region 
of spike protein were correctly predicted. In contrast 
to traditional machine learning methods, deep learn-
ing models master the features from the whole genome 
of coronavirus and predict the risk of cross-species viral 
infections with robustness.
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