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Abstract 

Background China is progressing towards the goal of schistosomiasis elimination, but there are still some problems, 
such as difficult management of infection source and snail control. This study aimed to develop deep learning models 
with high‑resolution remote sensing images for recognizing and monitoring livestock bovine, which is an inter‑
mediate source of Schistosoma japonicum infection, and to evaluate the effectiveness of the models for real‑world 
application.

Methods The dataset of livestock bovine’s spatial distribution was collected from the Chinese National Platform 
for Common Geospatial Information Services. The high‑resolution remote sensing images were further divided into 
training data, test data, and validation data for model development. Two recognition models based on deep learning 
methods (ENVINet5 and Mask R‑CNN) were developed with reference to the training datasets. The performance of the 
developed models was evaluated by the performance metrics of precision, recall, and F1‑score.

Results A total of 50 typical image areas were selected, 1125 bovine objectives were labeled by the ENVINet5 model 
and 1277 bovine objectives were labeled by the Mask R‑CNN model. For the ENVINet5 model, a total of 1598 records 
of bovine distribution were recognized. The model precision and recall were 81.9% and 80.2%, respectively. The F1 
score was 0.81. For the Mask R‑CNN mode, 1679 records of bovine objectives were identified. The model precision and 
recall were 87.3% and 85.2%, respectively. The F1 score was 0.87. When applying the developed models to real‑world 
schistosomiasis‑endemic regions, there were 63 bovine objectives in the original image, 53 records were extracted 
using the ENVINet5 model, and 57 records were extracted using the Mask R‑CNN model. The successful recognition 
ratios were 84.1% and 90.5% for the respectively developed models.

Conclusion The ENVINet5 model is very feasible when the bovine distribution is low in structure with few samples. 
The Mask R‑CNN model has a good framework design and runs highly efficiently. The livestock recognition models 
developed using deep learning methods with high‑resolution remote sensing images accurately recognize the spatial 
distribution of livestock, which could enable precise control of schistosomiasis.
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Background
Schistosomiasis is caused by infection with parasites of 
the genus Schistosoma. Schistosomiasis is a zoonotic par-
asitic disease that greatly affects human health and socio-
economic development. It is one of the neglected tropical 
diseases identified by the World Health Organization [1, 
2]. Schistosomiasis japonica was once highly prevalent 
in China. There were approximately 11 million human 
cases of schistosomiasis and 1.5 million bovines infected 
by S. japonicum at the early stage of the national schis-
tosomiasis control program in the early 1950s in China 
[3]. Livestock, notable bovines, are the main source of 
S. japonicum infection, which plays a critical role in the 
transmission of schistosomiasis [4, 5]. Since 2004, an 
integrated strategy with an emphasis on controlling the 
source of S. japonicum infection has been implemented 
in China. A package of interventions that involve adap-
tions to local circumstances includes breeding livestock 
in fences, replacing bovines with machines, bovine 
removal, and prohibiting pasture in snail habitats. These 
interventions have proven effective in reducing the trans-
mission of schistosomiasis [3, 6, 7]. The transmission of 
schistosomiasis japonica is affected by natural, ecologi-
cal, and social factors, and the geographical distribution 
of the disease is governed by the Oncomelania hupensis 
snail, the intermediate host of S. japonicum [8, 9]. The 
number and distribution of the sources of S. japonicum 
infection determine the risk of transmission of schistoso-
miasis [10]. Therefore, monitoring of O. hupensis breed-
ing and livestock infections has become an important 
part of monitoring the schistosomiasis transmission risk 
[11]. Because of backward agricultural production prac-
tices and the single industrial structure, bovines remain 
the main resource of productivity and economy, resulting 
in incomplete livestock removal and rebreeding following 
removal [4, 6]. In 2021, there were still 525,878 bovines in 
the schistosomiasis-endemic foci of China [12]. Dynamic 
monitoring and management of bovines are therefore 
effective in reducing the schistosomiasis transmission 
risk in O. hupensis snail-infested settings.

Recently, remote sensing has been widely used for 
monitoring O. hupensis-infested areas and evalu-
ating the risk of schistosomiasis transmission and 
spread, for example, Xue et  al. used high-resolution 
remote sensing technology to research schistoso-
miasis surveillance [13]. Xia et  al. used multi-source 
remote sensing images to assess the risk of intestinal 

schistosomiasis transmission impacted by flood-
ing [14]. With the increase in spatial resolution of 
remote sensing images and the development of com-
puter vision technology, the visual difference between 
remote sensing images and natural images has gradu-
ally reduced. The acquisition of high-resolution remote 
sensing images has recently emerged as a viable moni-
toring technique for detecting wildlife. The technique 
has been successfully used to identify and count several 
wildlife species in open, homogeneous landscapes and 
seascapes. For example, Duporge et al. used very high-
resolution satellite imagery and deep learning to detect 
and count African elephants in heterogeneous land-
scapes [15]. Laradji et al. used a deep-learning model to 
track illegal cattle ranching from high-resolution satel-
lite images [16]. The benefits of this monitoring tech-
nique are numerous. For example, large spatial extents 
can be covered within a short time, which allows repeat 
surveys and reassessments over short intervals of time 
[17, 18]. High-resolution remote sensing images at 
sub-meter resolution have been effectively used for 
the dynamic monitoring of large animal distributions 
[19–21].

Previous studies have shown that the convolutional 
neural network (CNN) can be used to explain, extract, 
and classify images [22]. The use of CNN is feasible 
for achieving automatic computer-based extraction of 
characteristics [23]. The ENVINet5 model is a semantic 
segmentation model that is suitable for the segmenta-
tion of simple and structure-fixed images. The model 
uses a few training images to create training datasets. 
The accuracy of segmentation is acceptable and has 
been widely applied for the recognition of biomedi-
cal images. The ENVINet5 model could be very feasi-
ble for the recognition of bovine distributions limited 
in structure and sample size [24]. Mask R-CNN can 
achieve pixel-level detection. For each target object, 
the bounding box is displayed and whether each pixel 
in the bounding box belongs to the object is marked 
[25]. The deep learning model is widely used in medi-
cal image diagnosis, face recognition, intelligent trans-
portation, and other fields [26–28], but it is rarely used 
in monitoring the infectious source of schistosomiasis, 
in the present study, we explored to recognize livestock 
sources of the S. japonicum infection from high-reso-
lution remote sensing images by using the ENVINet5 
and Mask R-CNN models. The goal was to provide a 
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technical basis for the monitoring and management of 
the source of S. japonicum infection.

Methods
Datasets
A dataset of high-resolution satellite images based on 
bovine distributions was collected from the Chinese 
National Platform for Common Geospatial Informa-
tion Services (https:// www. tiand itu. gov. cn/). The image 
resolution was set as 0.3–0.4  m. The cloud coverage 
was < 5%. The images were selected based on different 
environmental characteristics and the equilibrium dis-
tribution of recognition objects. In addition, the sample 
images were selected based on multiple illumination 
conditions, multiple photography angles, and geo-
graphical areas. This image dataset spanned the years 
from 2016 through 2021. The dataset comprised a wide 
range of geomorphological types, including grasslands, 
mountains, and rivers. Based on these defined condi-
tions, a total of 80 recognition objects were retrieved 
from the dataset (Fig.  1). They were classified into 
training and validation datasets and testing datasets for 
further model development, 70% of the entire dataset 
for training (Training data), 15% of the entire Dataset 
for validation (Validation data), 15% of the entire Data-
set for testing (Testing data).

Developing recognition models
Deep learning recognition models employ internal rules 
and indicative hierarchies along with computer-based 
image recognition to recognize and extract the target 
object from high-resolution images. The ENVINet5 
model has a good performance when the training data is 
small, and the Mask R-CNN model has a good running 
speed and precision. In this study, deep learning recog-
nition models to identify the spatial distribution of live-
stock were developed using the ENVINet5 and Mask 
R-CNN models in different scenarios.

ENVINet5 model
The ENVINet5 model used the U-net network. The net-
work is divided into two parts. The first is the contracting 
path that uses a typical CNN architecture. Each block in 
the contracting path consists of two successive 3 × 3 con-
volutions followed by a ReLU activation unit and a max-
pooling layer. This arrangement is repeated several times. 
The novelty of U-net comes in the second part, called the 
expansive path, in which each stage upsamples the fea-
ture map using 2 × 2 up-convolution. Then, the feature 
map from the corresponding layer in the contracting 
path is cropped and concatenated onto the upsampled 
feature map. This is followed by two successive 3 × 3 con-
volutions and ReLU activation. At the final stage, an addi-
tional 1 × 1 convolution is applied to reduce the feature 

Fig. 1 High‑resolution images with bovine distributions

https://www.tianditu.gov.cn/
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map to the required number of channels and produce the 
segmented image.

The energy function for the network is given by:

where w is a weight map that we introduced to give some 
pixels more importance in the training, Pk is the pixel-
wise SoftMax function applied over the final feature map, 
defined as:

In which ak denotes the activation in channel  K.

ENVINet5 model labeling
To capture the characteristic sample for developing 
image learning models, the recognized livestock should 
be first labeled for image datasets. The result is con-
structed as a label grid, which is used as an input for 
training deep learning recognition models. In the present 
study, the images were visually scanned for bovine before 
being sub-set into smaller areas, where we identified con-
gregations of bovine.

To label training datasets in the ENVINet5 model, 
the typical areas were selected from the training dataset 
images for data creation and labeling. The typical area 
may fully represent the object characteristics of the entire 

(1)E =

∑
w(x)logPk(x)(x)

(2)Pk = exp(ak(x))/
K

k
′
=1

exp(ak(x)
′

)

image, and the object characteristics in the area of inter-
est may partly indicate the characteristics of the whole 
image. The typical area is required to cover adequate 
target objects and may build adequate training datasets, 
thereby achieving better model training.

Mask R‑CNN model
Mask R-CNN is one of the methods of object detection 
and segmentation. It draws a bounding box for the target 
object and further marks and classifies whether the pixels 
in the bounding box belong to the object or not. These 
features can be used to identify and mark the bound-
ary of the object and detect key points. Mask R-CNN is 
based on Faster R-CNN and extends its application to 
the field of image segmentation. The Mask R-CNN pro-
cess uses the region proposal network (RPN) to extract 
features and to classify and tighten bounding boxes. 
Mask R-CNN replaces region of interest (ROI) pooling 
of Faster R-CNN with ROI alignment (RoIAlign), and 
consecutively uses the mask branch to mark the result of 
RoIAlign for the object area.

The Mask R-CNN is a ResNet-based architecture, 
which allows the extraction of effective characteristics 
at a deeper network layer. Such a model is characterized 
by high calculation efficiency and recognition precision. 
In this study, the Mask R-CNN model was selected. The 
network flowchart is shown in Fig. 2.

Fig. 2 Mask R‑CNN structure
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In the RPN, the approximate regional framework of the 
target object was generated through characteristic maps 
combined with predesigned anchors. The characteristic 
region was screened using the Mask R-CNN architecture. 
The classification, border, and mask of each characteristic 
map were calculated using the network head. The overall 
network loss represented the sum of losses in classifica-
tion, border, and mask. The mask loss (Lmask) was calcu-
lated using the following formula:

where N indicates the total sample number, y(i) indicates 
the expected output of Sample i (0 or 1), and ŷ(i) indi-
cates the actual output of Sample i (0 or 1) (i.e., the seg-
mentation result). The learning rate and weight decay of 
the Mask R-CNN model were 0.001 and 0.0005, respec-
tively. The optimal effect of the Mask R-CNN model was 
achieved following multiple-round training.

Mask R‑CNN model labeling
To capture the characteristic sample for developing image 
learning models, the recognized livestock should be first 
labeled for image datasets. The result is constructed as 
a label grid, which is used as an input for training deep 
learning recognition models. The images are visually 
scanned for bovine before sub-setting into smaller areas 
where congregations of bovines can be identified.

In the Mask R-CNN model, to ensure that training 
labels are representative of bovine at different times, 
images were selected for different seasons and years 
in both closed dense forests, grassland, and bare land. 
Images were labeled by defining bounding boxes around 
each individual bovine using the ‘Labelling’ graphical 
image annotation tool to increase the accuracy of bovine 
recognition. Data creation along the edge of bovine dis-
tribution was based on edge intensity monitoring results.

Model validation
To evaluate the performance of the developed recog-
nition models, the test dataset was used to validate the 
accuracy of deep learning models. The test images cov-
ered a wide range of geomorphological types, including 
grasslands, mountains, and rivers from different seasons 
and years.

In this study, to quantitatively evaluate the detection 
performance, performance metrics, including precision, 
recall, and F1-score, were used for algorithm evalua-
tion. Recognition precision was defined as the ratio of 
the number of precisely recognized bovines in statistical 
images to the total number of target objects, which was 
calculated using the following formula:

(3)Lmask = −

∑N

i=1
y(i)logŷ(i) +

(
1− y

)(i)

where P is precision, TP is a true positive (defined as the 
number of actual positives that are accurately identified) 
and FP is a false positive (defined as the number of nega-
tives that are incorrectly identified as positives). The sum 
of TP and FP is the number of all identified positives and 
indicates the total number of recognized target objects in 
this study.

Precision is an indicator used to evaluate the perfor-
mance of the predictive effect of a deep learning model. 
Recall (R) is defined as the proportion of actual positives 
that are accurately identified in all the original data. R 
was calculated using the following formula:

where FN is the false negative, defined as the number of 
positives incorrectly identified as negatives. The sum of 
TP and FN is the total number of positives in the origi-
nal data and represents the target objects in this study. 
Based on precision and recall, the F1-score is described 
as follows:

Field verification
Jiangxi Province is in the stage of schistosomiasis trans-
mission control, by 2021, the number of livestock bovine 
in schistosomiasis endemic villages was 68,601 [12]. To 
further validate the performance of the developed mod-
els in the real world, we selected Houtian Township, Xin-
jian District, Nanchang City, Jiangxi Province as the field 
verification area. It is a schistosomiasis-endemic area. We 
applied the developed models for recognizing and moni-
toring the spatial distribution of bovines in a schistoso-
miasis-endemic area as the field validation.

Results
Discriminative features specificity of bovines
Bovines identified by the developed recognition mod-
els for monitoring the source of S. japonicum infection 
had three characteristics. First, the size of recognized 
objects had a width of 6–7 pixels on images, which was 
equivalent to 2 or 3 m in reality. Second, the bovines were 
mainly found in grassland, bare land, island beaches, 
woodlands, and other areas. Third, the pixels where the 
bovines were located were obviously different from the 
surrounding background. Edge detection revealed that 
the edge intensity value of bovines was relatively large 
(Fig. 3).

(4)P =
TP

TP + FP

(5)R =
TP

TP + FN

(6)F1 =
2.P.R

P + R
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Results of bovine recognition
In this study, a total of 50 images were selected, and 1125 
bovine objectives were labeled for the ENVINet5 model. 
Figure 4 shows the labeling of selected typical images.

A total of 1277 training objectives were labeled with 
the Mask R-CNN model. Figure 5 shows the labeling of 
typical bovine objects.

We evaluated the efficacy of ENVINet5 and Mask 
R-CNN with the pre-labeled image dataset. In the ENVI-
Net 5 model, parameters for patch size, number of 
epochs, number of patches per epoch, number of patches 
per batch, and patch sampling rate, were set as Table 1.

In the Mask R-CNN model, the network hyper-param-
eters, including the momentum, learning rate, decay 
factor, training steps, and batch size were set as Table 2 
through cross-validation. To better analyze the training 
process, we set up 100 epochs for training.

Using the above model parameters, we extracted target 
objects from the labeled datasets built by the ENVINet5 
and Mask R-CNN models. The images of 80 selected 
objects of interest were extracted with the ENVINet5 
model, and a total of 1598 target bovines were extracted. 
Figure 6 displays the extraction of selected objectives. In 
addition, a total of 1679 target bovines were extracted 

Fig. 3 Characteristics of bovines in the images

Fig. 4 Sample labeling of the ENVINet5 model. a original images; b image labeling
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with the Mask R-CNN model. Figure  7 displays the 
regional extraction of four typical images.

Model precision and recall
The developed ENVINet5 and the Mask R-CNN models 
were implemented with test datasets for model valida-
tion. A total of 310 test datasets were built. The precision 
and recall of the ENVINet5 and Mask R-CNN models 
were 81.9% and 80.2%, and 87.3% and 85.2%, respectively. 
The respective F1-scores were 0.81 and 0.87 (Table 3).

The differences between ENVINet5 and Mask R-CNN 
models were obvious. Mask R-CNN had a better recall 
and precision, indicating that it can detect bovine more 
accurately. However, the model struggled to predict a 
good segmentation mask. Mask-RCNN had a relatively 

better performance compared to ENVINet5 for over- and 
under-segmentation.

Field verification
As shown in Fig. 8, the spatial distribution of bovines was 
extracted from the image using the developed recogni-
tion models. There are 63 bovines in the original image. 
53 were extracted using the ENVINet5 model and 57 
using the Mask R-CNN model.

Discussion
Schistosomiasis japonica remains a major public health 
concern in China. With concerted efforts for seven dec-
ades, great success has been achieved in schistosomiasis 
control [29, 30], and China is moving towards the elimi-
nation of schistosomiasis [31, 32]. Nevertheless, there are 
still many challenges for schistosomiasis elimination in 
China because the settings in schistosomiasis-endemic 
foci have not completely changed and there are wide-
spread factors associated with schistosomiasis transmis-
sion [33, 34].

Previous studies have shown that bovines are critical 
in the transmission of schistosomiasis in China [35]. The 
residents of schistosomiasis-endemic foci have a habit of 
free pasturing in marshlands and grasslands. Because of 
repeated infection with S. japonicum, high parasite bur-
dens in bovines, and high amounts of defecation, bovines 
reportedly contribute to most (80%) of the transmission 
of schistosomiasis [36]. The schistosomiasis transmis-
sion risk foci or S. japonicum infected, snail-infested sites 
that are identified in endemic foci are mostly attributed 
to the contamination of livestock stool [37]. Therefore, 

Fig. 5 Sample labeling of the Mask R‑CNN model. a original images; b image labeling

Table 1 The parameters of ENVINet5

Parameters Patch 
size

Number 
of 
epochs

Number 
of 
patches 
per 
epoch

Number 
of 
patches 
per 
batch

Patch 
sampling 
rate

Value 425 20 400 16 5

Table 2 The parameters of Mask R‑CNNE

Parameters Momentum Learning 
rate

Decay 
factor

Training 
steps

Batch 
size

Value 0.9 0.001 0.0005 934 1
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the management of livestock is effective in controlling 
the prevalence of schistosomiasis [38]. The implementa-
tion of an integrated strategy with an emphasis on con-
trolling the source of S. japonicum infection has resulted 
in remarkable effects in the livestock schistosomiasis 
control program [39]. However, the prevalence of S. 
japonicum infection in livestock may be underestimated, 
and there are still problems in livestock schistosomiasis 
control programs that should be noted. For example, the 
prohibition of pasture in grasslands and building safe 
pastures are theoretically effective in some schistosomi-
asis-endemic areas. However, a lack of effective manage-
ment makes it difficult to achieve the expected effects of 
schistosomiasis control [40].

The number of bovines in schistosomiasis-endemic 
foci in China has decreased dramatically since the inte-
grated strategy was implemented, with an emphasis on 
eliminating the source of S. japonicum infection [41]. It 
is now difficult to detect the presence of bovines through 
manual investigations. In this study, we aimed to inves-
tigate the feasibility of high-resolution remote sensing 
image recognition for monitoring bovine distribution. In 
doing so, we utilized ENVINet5 and Mask R-CNN deep 

learning-based models. We observed 81.9% overall preci-
sion of the ENVINet5 model and 87.3% overall precision 
of the Mask R-CNN model for the extraction of bovine 
distribution data. The results suggest that high-resolution 
remote sensing image recognition combined with deep 
learning models is feasible for monitoring livestock in 
schistosomiasis-endemic foci in China.

The ENVINet5 model features high performance 
against interference, with no requirement for complete 
labeling. Therefore, this model is more convenient to 
build labeled datasets and remains effective to extract the 
target object in presence of a few labeled datasets [42]. 
The Mask R-CNN model needs to create labels along the 
target object and requires a long time for data training. 
However, the Mask R-CNN model features a good frame-
work design and runs highly efficiently, which allows the 
effective detection of targets in images and generates a 
high-quality segmentation mask for each case [43]. In the 
present study, the Mask R-CNN model had better perfor-
mance for the extraction of bovine distribution data than 
the ENVINet5 model.

Currently, China is striving to increase the early sur-
veillance and forecast capability, improve the mechanism 

Fig. 6 Extraction results of the ENVINet5 model. a, c is the original images. b, d is the result of extraction
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for surveillance of infectious disease epidemics and pub-
lic health emergency, enhance the sensitivity and accu-
racy of assessment and monitoring, build a multi-touch 
mechanism for intelligent forecast, perfect multi-channel 
surveillance and forecast mechanisms, and improve the 
capability of real-time analysis and centralized deter-
mination [44]. Our study demonstrates the feasibility of 
deep learning for monitoring of livestock distributions in 
schistosomiasis-endemic foci of China, which provides a 
novel tool for schistosomiasis surveillance.

For the extraction of bovine distribution data, both the 
ENVINet5 and Mask R-CNN models had issues with 
false detection and missed detection. Further studies are 
required to improve the visualized effect of detections 
and the precision of target detections and optimize the 
framework of deep learning models for target detection. 
In addition, selection and improvements of appropriate 
deep learning models for the recognition of bovine dis-
tributions with high-resolution remote sensing images 
are needed for sensitive monitoring of livestock in schis-
tosomiasis-endemic foci. The livestock schistosomiasis 
control program will facilitate animal husbandry devel-
opments and protect human health in schistosomiasis-
endemic foci and accelerate the progress toward the 
elimination of schistosomiasis in China.

This study has several limitations. First, due to the lim-
itation of remote image resolution, bovines appear as a 
width of only several pixels on sub-meter high-resolution 
remote sensing images. Their spectral and morphological 
characteristics can be easily confused with those of other 
mass-shaped targets, such as dark grasslands, vertical 
shadows of artificial buildings, vehicles, undershrub, and 

Fig. 7 Extraction results of the Mask R‑CNN model. a, c is the original images. b, d is the result of extraction

Table 3 Number of training and test datasets and test accuracy 
of models

Model Number 
of 
training 
datasets

Number 
of test 
datasets

Accuracy

Precision 
(%)

Recall (%) F1‑score

ENVINet5 1125 320 81.9 80.2 0.81

Mask 
R‑CNN

1277 320 87.3 85.2 0.87
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other animals [45, 46]. Second, the acquisition of high-
resolution remote sensing images is difficult and expen-
sive, which makes it impossible to continuously observe 
schistosomiasis endemic areas.

Conclusions
With the increase in the resolution of remote sensing 
images and the decline in costs, high-resolution satellite 
images as a tool for surveying wild animals will become 
more popular in the future. The development of auto-
matic detection tools is therefore of great value for the 
large-scale monitoring of wild animals. Two deep learn-
ing models, ENVINet5 and Mask R-CNN displayed 
good performance. It is thus possible to precisely control 
schistosomiasis by recognizing the spatial distribution of 
bovine using deep learning methods and high-resolution 
remote sensing images.
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Fig. 8 Results of the ENVINet5 model and Mask R‑CNN model for extraction verification. a, b is the original remote images, c, d is the result of 
ENVINet5 extraction e, f is the result of MASK R‑CNN extraction
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