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Abstract 

Background  The term virus ‘spillover’ embodies a highly complex phenomenon and is often used to refer to viral 
transmission from a primary reservoir host to a new, naïve yet susceptible and permissive host species. Spillover trans‑
mission can result in a virus becoming pathogenic, causing disease and death to the new host if successful infection 
and transmission takes place.

Main text  The scientific literature across diverse disciplines has used the terms virus spillover, spillover transmission, 
cross-species transmission, and host shift almost indistinctly to imply the complex process of establishment of a virus 
from an original host (source/donor) to a naïve host (recipient), which have close or distant taxonomic or evolutionary 
ties. Spillover transmission may result in unsuccessful onward transmission, if the virus dies off before propagation. 
Alternatively, successful viral establishment in the new host can occur if subsequent secondary transmission among 
individuals of the same novel species and among other sympatric susceptible species occurred. As such, virus spillo‑
ver transmission is a common yet highly complex phenomenon that encompasses multiple subtle stages that can be 
deconstructed to be studied separately to better understand the drivers of disease emergence. Rabies virus (RABV) 
is a well-documented viral pathogen which still inflicts heavy impact on humans, companion animals, wildlife, and 
livestock throughout Latin America due substantial spatial temporal and ecological—natural and expansional—over‑
lap with several virus reservoir hosts. Thereby, the rabies disease system represents a robust avenue through which 
the drivers and uncertainties surrounding spillover transmission can be unravel at its different subtle stages to better 
understand how they may be affected by coarse, medium, and fine scale variables.

Conclusions  The continued study of viral spillover transmission necessitates the elucidation of its complexities to 
better assess the cross-scale impacts of ecological forces linked to the propensity of spillover success. Improving 
capacities to reconstruct and predict spillover transmission would prevent public health impacts on those most at risk 
populations across the globe.
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Background
Viruses have interacted with their hosts for at least thou-
sands of years [1]. Indeed, most viruses are expected to be 
host-specialists—infecting a single host species, instead 
of host-generalists—infecting multiple host species [2]. 
This long-term host-virus relationship allows the virus to 
induce negligible damage to its host in a process-termed 
co-evolution [3]. Thus, host-virus co-evolution facilitates 
coexistence by reducing reciprocal harm: viruses modu-
late their virulence against the host and hosts modulate 
their immune response against the virus [4]. A stable 
host-virus relationship, however, can be disrupted by 
external forces, causing the manifestation of disease (i.e., 
detrimental effect of the virus over the host). Cross-spe-
cies virus transmission, from the original host to a new 
host, occurs in fish, plants, and wildlife, which has also 
been referred as spillover transmission. Using an ecologi-
cal framework, this comment article reveals the inherent 
complexities of spillover transmission, strictly defined as 
the processes that allow cross-species transmission of 
viruses causing disease (i.e., pathogens) in humans (i.e., 
zoonotic pathogens; Box  1). Nevertheless, the rationale 
could be useful for non-zoonotic and non-directly trans-
mitted viruses and other infectious agents.

More than 75% of emerging infectious diseases in 
humans have originated from spillover transmission 
events between hosts that do not share obvious evolu-
tionary histories [5]. Thus, it has been proposed that evo-
lutionary biology alone has failed to anticipate emerging 
infectious diseases [6]. This failure could be due in part 
to the confirmation bias of spillover transmission studies 
which have been historically focused on (1) viruses that 
had successfully established in a naïve host causing the 
emergence of novel transmission cycles, (2) viruses that 
are virulent to a naïve yet susceptible host causing con-
spicuous disease, and (3) zoonotic viruses [7–10]. Nev-
ertheless, during spillover transmission events wildlife 
viruses are not guaranteed to establish in a naïve host, 
and may or may not affect humans in a negative way [10]. 
Thus, identifying or revealing factors at different scales of 
complexity associated with spillover transmission is key 
for the better understanding and forecasting of disease 
emergence.

Defining spillover transmission
The transmission of a virus from one species to another 
is termed “spillover transmission” [10, 11]. As such, 
“virus spillover” is a correct term commonly used in 
epidemiology of zoonoses to refer to cross-species or 
interspecies transmission events. “Disease spillover”, 
in contrast, is an incorrect term commonly used in 
the gray literature, to refer to the same phenomenon. 

Disease spillover is an erroneous use of the spillo-
ver term because diseases per se cannot be transmit-
ted, only their causative agents (e.g., viruses). Many 
emerging infectious diseases have originated via spill-
over transmission of viruses from an original or pri-
mary wildlife hosts (i.e., reservoir host) to new, naïve 
domestic animal hosts followed by successful onward 
intraspecific transmission (Fig.  1). In some instances, 
wide host-range viruses transmitted from wildlife to 
domestic animals can reach humans through a second-
ary spillover transmission event (i.e., spillover trans-
mission from new hosts, instead of the original host). 
For example, outbreaks from spillover transmission in 
the last two decades include: rabies virus (RABV; Lys-
savirus) from vampire bats to cattle in Latin America 
[12, 13], swine acute diarrhea syndrome coronavirus 
(SADS-CoV; Alphacoronavirus) from Rhinolophus spp. 
bats to pigs in China [14], Nipah virus (Henipavirus) 
from flying-fox bats to pigs in Bangladesh [15, 16], 

Fig. 1  Recent spillover transmission events. A native reservoir 
serves as the source of a virus to other host species, in which it 
could be virulent. This accidental cross-species transmission (i.e., 
spillover transmission) (red arrows), occurs between host species 
without evolutionary relatedness. Spillover transmission between 
two genetically unrelated species has been documented in recent 
emerging infectious where a pathogen from an original wildlife 
host (left) is transmitted (primary spillover; red arrows on the left) 
to another wildlife or domestic species (middle), and from them 
to a human (secondary spillover; right). SADS-CoV: swine acute 
diarrhea syndrome coronavirus. SARS-CoV: severe acute respiratory 
syndrome coronavirus. MERS-CoV: Middle-East respiratory syndrome. 
SARS-CoV-2: severe acute respiratory syndrome coronavirus 2



Page 3 of 9Escobar et al. Infectious Diseases of Poverty           (2023) 12:10 	

Marburg virus from the African fruit bat (Rousettus 
aegyptiacus) to primates in Africa, severe acute res-
piratory syndrome coronavirus (SARS-CoV or SARS-
CoV-1; Betacoronavirus) from bats to palm civets [17], 
Middle-East respiratory syndrome (MERS-CoV; Beta-
coronavirus) from bats to camels in the Middle East 
[18–20], Hendra virus (HeV; Henipavirus) from flying-
fox bats to horses in Australia [21], and severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2; 
Betacoronavirus) from bats to a yet unknown second-
ary host in Southeast Asia [22–25] (Fig. 1).

Strikingly, there are no known empirical indicators for 
predicting the likelihood of spillover events. Neverthe-
less, spillover transmission events are better character-
ized for some viruses, such as bat-borne rabies in Latin 
America, which offers opportunities to better understand 
spillover transmission and successful onward transmis-
sion to secondary susceptible hosts. A series of factors 
could contribute to the likelihood of spillover transmis-
sion and successful virus establishment across scales, 
from micro to macro. At the fine scale, susceptibility, 
immune status, genetics, population density, availability 
of resources (e.g., diet), sex, and age of the host reservoir 
could be linked to higher levels of viral shedding or higher 
contact rates to increase spillover transmission and suc-
cessful virus establishment in a new species (Fig. 2). At an 
intermediate scale, biodiversity composition, expansion 
of agriculture, and intensification of livestock production 
could play a role in the likelihood of spillover transmis-
sion by facilitating interactions between species. Finally, 
at coarse scales, global climate and landscape change or 
expansion of species ranges could also influence the risk 
of spillover transmission.

Furthermore, factors facilitating spillover transmis-
sion may act across scales and be interconnected. For 
example, paleontological evidence suggests that extinc-
tions of large mammals due to climate change increased 
the endemicity of pathogens in the remaining wildlife 
community, which may conduce to increased spillover 
transmissions from wildlife to humans [26]. Further-
more, climate and landscape variation modulate mammal 
species composition, which shapes virus speciation and 
endemism altering viral spillover rates between primary 
hosts and sympatric naïve hosts [27–29]. As such, bio-
diversity losses due to global change could influence the 
propensity of viral spillover transmission [30], evidenced 
by previous studies on the influence of potential changes 
in wildlife species assemblages due to environmental 
change [31–34].

Spillover transmission versus disease emergence
Pathogen virulence and pathogen-induced extinction 
risks are generally considered to be low in reservoir hosts 
[35]. Nevertheless, in the new host spillover transmission 
can have two different outcomes: successful and unsuc-
cessful establishment (Fig. 3). In unsuccessful virus estab-
lishment, the virus fails to establish in the new host due 
to factors such as the new host having no cell receptor 
affinity [36], low intracellular compatibility (e.g., no com-
patible codon usage) [37], a robust immune response that 
clears the infection, or having behaviors which reduce 
exposure to the virus (e.g., solitary vs. social species) 
[38]. Similarly, the virus could fail to establish due to high 
virulence in the new host species, which results in the 
death of the infected host before sustained propagation 
or onward transmission among conspecifics can occur. 
New hosts which do not generate secondary infections or 

Fig. 2  Factors potentially related to spillover transmission across scales. Different biological process act at different spatial scales and may have 
variables impacts across those scales. Which scale is appropriate to study specific patterns and parameters is still an unresolved question in disease 
ecology. Studies at fine scale provide high-detail and specificity, but cover small areas while coarse-scale studies cover large geographic areas at the 
cost of detail
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onward transmission among conspecifics during spillo-
ver transmission are termed “end hosts.” Alternatively, 
viruses may successfully establish and generate brief 
or sustained onward transmission, resulting in a “new” 
reservoir host. For example, new hosts could have an 
immune response which is insufficient to clear the infec-
tion, allowing the virus to multiply and be transmitted 
onward to new individuals of the same species before the 
death of the new individual host. Establishment of the 
virus can be achieved without the need for viral evolution 
or adaptation—“virulence conservatism”—or reflected as 
evolutionary change in the virus—“host shift”. Secondary 

onward transmission resulting from successful viral 
establishment, either with or without viral evolution, is 
the prelude to disease emergence [10, 39–46]. An impor-
tant knowledge gap that has not yet been fully explored 
with regard to disease emergence includes the role of 
habitat conditions or biodiversity gradients that may 
limit or facilitate secondary onward transmission (Box 1).

Box 1 Defining spillover
In this opinion article, spillover transmission does not 
necessarily implies onward transmission after the new 
host is infected. Instead, spillover transmission refers 
to an specific moment in space and time when a given 
viral agent established in its primary reservoir host, 
circumstantially meets a new host. Thus, spillover 
transmission can be strictly referred as the moment 
of encounter, which implies a virus, somehow, enters a 
new host. Nevertheless, entering a new host does not 
necessary implies a virus will be successful to establish 
an infection and therefore be able to get transmitted 
intra-specifically (i.e., among individuals of the same 
species) or inter-specifically (i.e., among individuals 
of different species). Both scenarios denote onward 
transmission, though with some subtle differences. 

Once spillover transmission occurs (the encounter), 
a onward transmission will depend on a successful 
infection (i.e., establishment of the virus in the new 
host). A successful infection will only happen if the 
virus finds an adequate permissive target cell and the 
virus possesses effective tools or mechanisms to evade 
the innate and adaptative host’s immune response of 
the host. Spillover could be considered as an stochas-
tic event that may be governed by the probability a 
new host could get in touch with a virus  from another 
species, regardless the virus’ ability to cause a success-
ful infection with a consequent onward transmission

Spatial scale
Different biological process act at different spatial scales 
[47]. For example, while behavior may be relevant to 
explain transmission patterns at the local level, climate 
could be more important to explain transmission at the 
continental level [48]. The appropriate scale to study 
specific patterns and parameters is still an unresolved 
question in disease ecology [49, 50]. Studies at fine scale 
provide high-detail and specificity but cover small areas, 
while coarse-scale studies cover large geographic areas 
at the cost of detail (Fig. 4). Spillover and onward trans-
mission from an original host to a naïve host has been 
studied at the molecular, individual, and population level. 
Nevertheless, there is a need for spillover-transmission 
research at coarser scales to untangle the biogeographic 
elements of cross-species transmission [51]. Different 

Fig. 3  Diagram of spillover transmission events with successful and 
unsuccessful virus establishment in the new host. A geographical 
range shift of a host species may cause contact with a novel host 
species. This disturbance in host species assemblages may cause 
transmission of viruses from the primary host to a new, naïve host, 
resulting in the expression of disease or death of the new host. 
Alternatively, the new host infected with the virus could show 
complete innocuity due to the incompetence of the host to interact 
with the novel virus. a Pathogens generally fail to successfully 
establish in a naïve host (orange) due to the virus removal (e.g., 
the immune system clears the infection or there is no cell tropism 
compatibility to lack of affinity with cell receptors). b Pathogens 
could also fail to establish in a new host due to the host’s death (e.g., 
pathogen kills the naïve host). Failure of the pathogen to establish 
in a new host, also known as ‘end hosts’ (orange), will not generate 
secondary transmission. c In rare spillover transmission events, 
pathogens successfully establish in a naïve host in the absence of 
pathogen’s adaptation (Pathogen does not change; i.e., pathogen’s 
complete genome highly conserved, without adaptative mutations. 
Under this scenario pathogens mainly present neutral evolution). e 
Alternatively, the pathogen could develop adaptation (i.e., mutations) 
to modulate its virulence and escape or overcome the host’s 
immunity or increase cell receptor affinity (Pathogen change, i.e., 
host-shift). Successful pathogen establishment in a naïve host, also 
known as ‘new host’ is the prelude for disease emergence
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spatial scales allow for the use of data with different 
information and at different levels of detail (i.e., grain; 
Fig. 4). At fine spatial scales, spillover studies can analyze 
host-level data (e.g., sex, age, genetic variation, body size, 
etc.) to assess the role of reservoir features on spillover 
risk. At medium spatial scales, researchers should assess 
landscape-level data (e.g., land cover change, intensity of 
urbanization, livestock density) to understand these fea-
tures’ impact on spillover propensity. At coarse spatial 
scales, future investigations should explore how biogeo-
graphic factors (e.g., temperature, precipitation, evapo-
transpiration) explain why virus spillover transmission 
occurs in some areas but not others and when onward 
transmission is more likely.

Bats and spillover
Bats are known to be major reservoirs hosts for many 
viruses, and consequently the primary source (donor 
or source host) of microorganisms that can successfully 
establish in naïve species (recipient host) [52, 53]. The 
high number of bat species (~ 1200) inherently gener-
ates a proportionally high amount and diversity of viruses 
(virosphere) with the potential to infect humans and 
other mammals [54]. That is, more bat-borne viruses are 
expected to be discovered as research effort increases 
[55]. As such, global hotspots of bat diversity are 

expected to harbor a larger and more diverse plethora of 
microorganisms with pandemic potential.

Viral establishment in the new host is dependent 
upon the frequency of spillover transmission events and 
demography of the new host [35]. Intermediate levels of 
virulence are also highly suitable for successful estab-
lishment in a naïve host species [35]. Pathogen virulence 
generally dependents upon the host affected [36] (Fig. 3). 
That is, a virus could be highly virulent for some host 
species or individuals, but not virulent for others. Molec-
ular-level mechanisms of infection are well understood 
for many emerging diseases originated from spillover [3]; 
thus, one next frontier on spillover transmission research 
is a focus on the drivers of the spillover events themselves 
to understand why spillover occurs, which is neglected in 
many spillover transmission studies.

Rabies as a model of spillover transmission
Rabies is caused by all members of the Lyssavirus genus, 
and ranks among the best-understood and best-surveyed 
disease systems [56, 57]. RABV is the most widespread 
agent within the genus and its detection and identifica-
tion are achieved with high certainty by continent-wide 
comprehensive surveillance systems [58]. RABV is dis-
tributed across the globe, with hotspots of viral diversity 
along the Neotropics [59, 60]. Rabies virus transmission 
requires direct contact, through bites and scratches [61], 
and distinct viral lineages have become established in 
different species and populations within the Carnivora 
and Chiroptera orders [55]. Furthermore, the study of 
rabies was foundational to the development of the idea 
of vaccination (i.e., by Louis Pasteur); modern molecu-
lar epidemiology; disease eradication under One Health 
approaches; development of oral vaccination strategies; 
and for understanding disease persistence, natural immu-
nity, abortive infections, spillover transmission, disease 
ecology, and evolution [57, 61]. Rabies is also almost 
100% fatal for infected individuals, killing ~ 59,000 peo-
ple annually, and causes at least USD 8.6 billion in eco-
nomic losses annually [62]. In summary, rabies is a well 
understood, data-rich disease with a high degree of host 
plasticity and a demonstrated history of viral conserva-
tism across host lineages, resulting in disease persistence. 
These elements make the rabies system a unique oppor-
tunity for advancing the global understanding of spillover 
transmission across regions, host taxa, and periods.

Spillover transmission of rabies virus
While canine-rabies has been almost eradicated in the 
Americas, bat-borne rabies is now an emerging public 
health and agricultural problem [56, 63]. In Latin Amer-
ica, most rabies cases in humans and domestic animals 
originate from bites inflicted by the common vampire 

Fig. 4  Multiscale framework of spillover research. a Pathogen 
spillover studies across fine, medium, and coarse scales allow 
bottom-up and top-down assessments. b Different scales allow to 
cover different study area extents, from individuals, to ecosystems. 
Modified from [74]
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bat (Desmodus rotundus) (Fig.  5), one of the only three 
mammal species 100% dependent on blood to survive 
[56, 63]. The species has a broad geographic range, and 
feeds on the blood of a variety of prey species, including 
wildlife, livestock, pets, and humans [64]. Some of the 
southernmost D. rotundus populations in South America 
even feed on marine mammals (e.g., sea lions) and birds 
(e.g., penguins). During feeding, D. rotundus can trans-
mit rabies virus to their prey (Fig. 5), which may result in 
primary spillover transmission or even secondary spillo-
ver to other species (e.g., rabies from D. rotundus to cats 
and then from cats to humans). Vampire bat-borne rabies 
virus (VB-RABV) outbreaks in humans suggest that mor-
tality mainly occurs in tropical and subtropical regions. 
For example, Brazil reports about two cases of human 
rabies annually caused by bat-borne rabies viruses that 
have been laboratory-confirmed as antigenic variant 3, 
a RABV variant associated with D. rodundus. However, 
underreported cases that are not laboratory confirmed 
are probably much more common. Documenting how 
VB-RABV can spill from D. rotundus over to other spe-
cies can inform and guide strategies to prevent VB-RABV 
spillover transmission to humans and domestic animals, 
and help prevent the potential spread of D. rotundus 
rabies from Latin America into the United States.

In summary, VB-RABV has been documented 
for over a century [65], and as a system displays 
many interesting elements of spillover transmission. 

VB-RABV from wildlife species is regularly transmit-
ted to domestic animals and humans [64, 66], has a 
conservative virus for which dramatic viral genomic 
change has not been observed during some spillover 
events [61], and possesses an original reservoir host 
species (bats from the New World) which is often times 
evolutionary distant from its receptor hosts (e.g., her-
bivores from the Old World) [60]. Furthermore, D. 
rotundus is one of the most well studied mammals in 
the Americas [57, 58, 64, 67] (Fig. 6; considerable avail-
ability of specimens of the species), and is distributed 
across tropical regions where well-studied species are 
scarce. Comprehensive documentation and available 
data on rabies virus and the vampire bat geographic 
distribution across the Neotropics is reasonably well 
collected in a continuous and standardized form. That 
is, bat hosts and virus detection and identification are 
attained with high certainty by a continent-wide com-
prehensive surveillance system. In Latin America alone, 
at least 23,536 outbreaks of VB-RABV spillover to cat-
tle were reported between 1970 and 2021 [68]. For 
example, VB-RABV lineage antigenic variant 3, specific 
to D. rotundus, shows failure to establish onward trans-
mission after spillover transmission to livestock. These 
elements make vampire bat borne rabies an extraordi-
narily unique wildlife-disease system for advancing the 
understanding of spillover transmission across large 
study areas.

Fig. 5  Desmodus rotundus rabies virus spillover and onward transmission. Rabies virus is transmitted accidentally from one infected vampire to its 
prey Rabies virus is transmitted from an infected vampire bat (i.e., reservoir host) to other species, which may or may not maintain transmission (i.e., 
end host vs. new host; Fig. 3). Primary spillover transmission events are common in Latin America. Secondary spillover transmission also occurs and 
result in zoonotic spillover (i.e., human infections)
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Conclusions
Virus spillover transmission, as the prelude for dis-
ease emergence, is a poorly understood highly complex 
phenomenon [10]. Although spillover transmission is 
expected to increase in incidence and geographic range 
in the future years as a result of global change [6], the role 
of environmental factors at different scales of complex-
ity has been rarely studied quantitatively [69]. As a result 
of these uncertainties, there is a poor mechanistic under-
standing of spillover transmission inherent processes 
(subtle stages) that limits humanity’s ability to predict 
virus spillover transmission across different regions. A 
persistently unsolved question in disease ecology, there-
fore, is the extent to which spillover transmission can be 
quantified and predicted at the local, regional, and con-
tinental levels (i.e., across spatial scales). Research is still 
needed on the ecological and biogeographic drivers lead-
ing to cross-species viral transmission to determine the 
mechanisms that facilitate host-virus dynamics across 
regions and environmental gradients [70–72]. Under-
standing where spillover transmission events are more 
likely to occur is the crucial first step where focused sur-
veillance should take place, to anticipate effective early 
prevention and control programs before virus spillo-
ver transmission ends in disease emergence. The status 
quo in spillover transmission research reveals predic-
tive limitations that fail to determine when a spillover 

transmission event could result in outbreaks, epidemics, 
and pandemics such as the COVID-19 pandemic caused 
by SARS-CoV-2.

Vampire-bat-borne rabies (VB-RABV) is an ideal 
biological system to study spillover transmission. For 
instance, RABV is well understood and there is an effec-
tive vaccine to reduce biosecurity risks for researchers. 
Additionally, VB-RABV spillover from D. rotundus to 
livestock is frequent and widespread in Latin America. 
Finally, VB-RABV primary spillover transmission to 
cattle results in end hosts, so that there are immense 
opportunities to better understand actual spillover trans-
mission events that do not necessarily result in the estab-
lishment of new transmission cycles that may end up in 
long-lasting epidemics.

Future research in this field should focus on five key 
questions. (1) What landscape conditions are needed 
for a spillover transmission event to occur in the first 
place? (2) How can biodiversity  composition modulate 
the likelihood of spillover transmission? and (3) What 
type of mutations in viral genomes facilitate spillover 
transmission and subsequent disease spread across dif-
ferent species? (4) Are there any climatic drivers favoring 
or limiting spillover transmission? (5) How do landscape 
changes, such as changes due to emergent commodity 
or natural resources exploitation (e.g., lithium) or mas-
sive destruction after armed conflicts impact spillover 

Fig. 6  Large vampire bat records. Unpublished records of Desmodus rotundus and specimens are available across Latin America. For example, 
specimens are stored in biological collections in Latin America and available for future research to study spillover transmission and disease 
emergence
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transmission of wildlife viruses? These research lines are 
of critical public interest considering that the circulation 
of zoonotic viruses in wildlife is, in general, a threat to 
human health and social/economic development [73]. By 
understanding the specific drivers of zoonotic virus spill-
over transmission from wildlife, and by forecasting areas 
suitable for successful spillover transmission, health pro-
fessionals could implement early detection, control, and 
elimination strategies for effective outbreak containment 
that will reduce economic impacts.

Abbreviations
RABV	� Rabies virus
VB-RABV	� Vampire Bat Rabies or Vampire Bat-borne Rabies
US	� United States
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