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Abstract

Background Future distribution of dengue risk is usually predicted based on predicted climate changes using
general circulation models (GCMs). However, it is difficult to validate the GCM results and assess the uncertainty of the
predictions. The observed changes in climate may be very different from the GCM results. We aim to utilize trends in
observed climate dynamics to predict future risks of Aedes albopictus in China.

Methods We collected Ae. albopictus surveillance data and observed climate records from 80 meteorological stations
from 1970 to 2021. We analyzed the trends in climate change in China and made predictions on future climate for the
years 2050 and 2080 based on trend analyses. We analyzed the relationship between climatic variables and the preva-
lence of Ae. albopictus in different months/seasons. We built a classification tree model (based on the average of 999
runs of classification and regression tree analyses) to predict the monthly/seasonal Ae. albopictus distribution based
on the average climate from 1970 to 2000 and assessed the contributions of different climatic variables to the Ae.
albopictus distribution. Using these models, we projected the future distributions of Ae. albopictus for 2050 and 2080.

Results The study included Ae. albopictus surveillance from 259 sites in China found that winter to early spring
(November—February) temperatures were strongly correlated with Ae. albopictus prevalence (prediction accuracy
ranges 93.0-98.8%)—the higher the temperature the higher the prevalence, while precipitation in summer (June—
September) was important predictor for Ae. albopictus prevalence. The machine learning tree models predicted the
current prevalence of Ae. albopictus with high levels of agreement (accuracy >90% and Kappa agreement > 80% for

all 12 months). Overall, winter temperature contributed the most to Ae. albopictus distribution, followed by sum-

mer precipitation. An increase in temperature was observed from 1970 to 2021 in most places in China, and annual
change rates varied substantially from -0.22 °C/year to 0.58 °C/year among sites, with the largest increase in tem-
perature occurring from February to April (an annual increase of 1.4-4.7 °C in monthly mean, 0.6-4.0 °C in monthly
minimum, and 1.3-4.3 °C in monthly maximum temperature) and the smallest in November and December. Tempera-
ture increases were lower in the tropics/subtropics (1.5-2.3 °C from February—April) compared to the high-latitude
areas (2.6-4.6 °C from February—April). The projected temperatures in 2050 and 2080 by this study were approximately
1-1.5 °C higher than those projected by GCMs. The estimated current Ae. albopictus risk distribution had a northern
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projected to be 1.2 billion.

future risk distribution

boundary of north-central China and the southern edge of northeastern China, with a risk period of June-September.
The projected future Ae. albopictus risks in 2050 and 2080 cover nearly all of China, with an expanded risk period of
April-October. The current at-risk population was estimated to be 960 million and the future at-risk population was

Conclusions The magnitude of climate change in China is likely to surpass GCM predictions. Future dengue risks will
expand to cover nearly all of China if current climate trends continue.

Keywords Aedes albopictus, Observed climate change, Projected future climate, Observed risks distribution, Projected

Background

Dengue is a viral infection transmitted to humans
through the bite of infected female Aedes mosquitoes [1].
Dengue is becoming an increasing global public health
threat, not only because no vaccine or effective treatment
exists for the disease, but also because of its unpredict-
able epidemics and its dramatic geographic expansion
worldwide due to the aggressive global invasion of the
vector Aedes albopictus [2—6]. The WHO reported 5.2
million dengue cases in 2019, the largest number ever
reported globally, compared to about 0.5 million in 2000
and 2.4 million in 2010. Asia represents approximately
70% of the global burden of the disease [1]. The estimated
at-risk population was 3.9 billion in 2010, and risk exists
in 129 countries [7-9].

In China, the first dengue outbreak, which was also the
first report of dengue, since World War II occurred in
1978 in the southern city of Foshan, Guangdong Province
[10]. Before 2000, dengue outbreaks in China were con-
centrated in a small tropical area in the southern coastal
region [11-14]. Prior to 2010, dengue outbreaks moved
slowly northward along the southeastern coast [15, 16];
since 2010, however, outbreaks have soared, and in 2013,
the wavefront moved to central China [12, 13, 17, 18].
The largest number of outbreaks, in terms of outbreak
areas covered, occurred in 2019 and spanned 15 prov-
inces, including Shandong Province in northern China
[19-21]. Early dengue outbreaks were likely initiated by
internationally imported infections [11, 20]; however,
molecular analyses and index case tracking indicate that
most recent outbreaks in central and northern China
have been caused by domestic travelers returning from
dengue-endemic regions of southern China [18, 22, 23].
Although Aedes aegypti is believed to be the primary
dengue virus vector globally and was responsible for
most of the dengue outbreaks in southern China before
2000 [24-27], recent dengue outbreaks in China have
been caused almost exclusively by Ae. albopictus [28, 29].
In fact, in recent years Ae. aegypti has been found only
in a few small spots in southern and southwestern China
[30, 31], whereas Ae. albopictus is found all over China,

including in all mild temperate regions in northern China
[32, 33].

At the same time, there is a strong link between den-
gue outbreaks and climatic variability [34-38], since
the development and survival of Aedes mosquitoes and
virus replication depend on environmental, especially
climatic, conditions [39-42]. Many studies have mod-
eled the impact of climate change on the future potential
regional and global expansion and distribution of den-
gue virus transmission risk [40, 41, 43, 44]. Nonetheless,
dengue outbreaks have expanded into temperate north-
ern China. Global climate change is real, as observed
in the past 50 years, and climate change may accelerate
the northward expansion of dengue outbreaks in China.
However, nearly all dengue risk assessment modeling
has used future climate projections from climate models,
also known as the General Circulation Models (GCMs)
[40, 41, 43—-46]. There are different GCMs based on dif-
ferent assumptions, and they produce quite different
results [47]. In addition, there are different emissions sce-
narios [47]. However, uncertainty due to GCMs is rarely
assessed, and predicted results may not be validated. A
recent study showed that from 1979 to 2021, the Arctic
warmed nearly four times faster than the climate model
predicted, and the magnitude of temperature increase
depended on latitude, indicating that GCMs may severely
underestimate global warming [48]. Since we have many
years of observational data from meteorological stations
across the globe, it would be interesting if not prefer-
able to use real data to make future climate predictions
and dengue risk assessments because the results can be
tested or validated using currently available observed
data [49]. Using observed climatic records has additional
advantages. For example, climate changes vary in differ-
ent regions [48, 49]; temperature increases in the tropics
may have a limited impact on dengue risks in these areas,
whereas temperature increases in high-latitude temper-
ate zones may push the vector distribution boundary far-
ther north [33, 40, 41, 49], resulting in a major impact on
the expansion of the Aedes distribution and dengue risk.
Using observed climatic data can lead to more accurate
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estimates of the spatial distribution of climate trends.
However, few if any studies have attempted to use real
climatic records to assess future dengue risks caused by
global climate change [49].

In this study, we analyzed the relationships between the
prevalence of Aedes mosquitoes and climatic variables
in China. We examined the climate trends from 1970 to
2021 based on meteorological observations across China
and mapped the spatial variation of these climate trends.
Based on these trend analyses, we predicted the poten-
tial future climate conditions and Ae. albopictus risks in
China. Dengue risk seasonality and at-risk populations
were also estimated. This study provides an alternative
look at the impact of climate change on dengue risk from
a different angle.

Materials and methods

Aedes mosquito data collection

We employed the Aedes mosquito collection database
established in our previous study [33]. The prevalence of
Aedes at a site was defined as a place where Aedes mos-
quitoes have been detected. We updated the database by
reviewing some recently published work [28, 29, 50-52].
The updated Aedes mosquito records included data up
to 2021 and covered all provinces/autonomous regions/
municipalities in China except Taiwan Province (Fig. 1).
The new China CDC Aedes surveillance system covers
23 provinces/autonomous regions/municipalities, plus
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published data from surveillances conducted by provin-
cial CDCs [29, 32, 54]. Most of the surveillances is per-
formed in areas where Aedes data are already available,
especially in southern China. However, there are several
newly Aedes-invaded places, especially at high altitude
of western Sichuan Province (Ae. albopictus) and central
Qinghai Province (Aedes caspius and Aedes flavidorsa-
lis) (Fig. 1). Surveillance sites have also been updated in
Tibet Autonomous Region, however, no Aedes has been
detected in the area (Fig. 1). In this study, we used data
for Ae. albopictus only; other Aedes mosquitoes were not
included [54-56]..

Many places in southern China have more than one
Ae. albopictus records, to avoid redundancy, much of the
sampling data from southern China was not included,
since Ae. albopictus exists everywhere there (Fig. 1).
Most of the surveillance results from northern China,
especially from areas along the Ae. albopictus distribu-
tion boundary, were included in the modeling process so
that the risk models could identify the environmental/
climatic variables that could differentiate mosquito pres-
ence/absence sites. A few Ae. albopictus present locali-
ties are on the eastern slope of the Qinghai-Tibet Plateau,
where the elevation is>3000 m above sea level (Fig. 1).
Although other mosquitoes such as Culex, Anopheles,
and other Aedes mosquito species such as Ae. caspius
and Ae. flavidorsalis have been found in the central area
of the Qinghai-Tibet Plateau, Ae. albopictus has not been
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Fig. 1 Distribution of Aedes albopictus surveillance sites in China
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detected there (Fig. 1). The study included Ae. albopictus
data from 259 sites for analyses (Fig. 1).

Environmental and climatic suitability modeling

We updated the machine learning classification and
regression tree (CART) model based on the updated
Aedes database and WorldClim 2.0 data [33, 57]. Details
of the climatic and environmental data have been
described in our previous study [33]. In brief, the 1970-
2000 average monthly climate data for the minimum,
mean, and maximum temperature and precipitation were
downloaded from WorldClim version 2.1 (https://www.
worldclim.org/data/worldclim21.html). The environmen-
tal regions were divided into four categories: humid, sub-
humid, semiarid, and arid [33]. Climatic zones comprised
nine categories: south subtropical, mid-subtropical,
north subtropical, warm temperate, mild temperate, cool
temperate, plateau subtropical, plateau temperate, and
plateau subfrigid [33].

We conducted univariate analyses to examine the
relationship between Ae. albopictus prevalence and cli-
matic variables using Chi-square automatic interaction
detection (CHAID) [58, 59]. The aim was to examine
how changes in climatic variables affected the presence/
absence of Ae. albopictus. CHAID is similar to logistic
analysis, but CHAID produces the critical cutoff of pre-
dictors and allows for a nonlinear combination of predic-
tors [60]. In addition to overall prediction accuracy, we
measured sensitivity and specificity to examine the pre-
diction skewness (bias for presence/absence) and used
Yale’s coefficient to measure the association between the
observed and predicted prevalence of Ae. albopictus by
each climatic variable [61, 62]. We did not examine the
impact of summer temperatures (June—September) on
Ae. albopictus prevalence, and we only examined the cli-
matic effect for the same month and the following four
months.

For the multivariate analysis, the detailed multi-step
modeling process has been described in our previ-
ous study [33]. Briefly, after data pre-processing, CART
models were developed using a tenfold cross-validation
method to predict the potential seasonal (or monthly)
distribution ranges of Ae. albopictus in China at a high
resolution based on environmental-climatic conditions
(refer to Additional file 6: Supplement A for modeling
details). Since Ae. albopictus was found only in northern
China from June to September, these months were aggre-
gated as one season for risk analyses. Environmental-cli-
matic suitability for Ae. albopictus was predicted as the
average predicted suitability probability of the 10 mod-
els developed during the tenfold cross-validation mod-
eling process, and the spatial resolution was 30 arcsec or
approximately 1 km.

Page 4 of 14

Model performance was measured using prediction
accuracy, sensitivity (presence predicted as presence),
specificity (absence predicted as absence), and Cohen’s
Kappa coefficient [63]. Kappa measures the reliability
of agreement between observed and predicted qualita-
tive data and considers the possibility of the agreement
occurring by chance.

Trends in climate change in China, 1970-2021

To examine the heterogeneity of climate trends in China,
we collected daily meteorological records from 1970 to
2021 from 90 meteorological stations (Additional file 1:
Fig. S1). Since Aedes mosquitoes exist nearly everywhere
in southern China except the Qinghai-Tibet Plateau, we
selected only a representative subset of stations for cli-
mate trend analysis. We selected as many stations as pos-
sible from northern China, especially near the current
margin of the Aedes distribution [33], but excluded some
stations to avoid oversampling; i.e., if two stations were
located very close to each other (<200 km) we selected
only one of the two stations. Daily records were summa-
rized as monthly maximum/minimum/mean tempera-
tures and monthly cumulative precipitation. Trends in
monthly data at each station were analyzed using linear
regression analysis. Climate trends were measured as the
annual change rates in monthly maximum/minimum/
mean temperature and annual cumulative precipitation.
Due to the large variation in monthly precipitation in dif-
ferent years, trends in monthly precipitation were not
analyzed. Climate change trends in China were analyzed
by month (temperature) or annually (precipitation) and
aggregated based on latitude.

Climate change and its impact on Aedes distribution
To predict future climate distribution, we needed to cre-
ate a climate trend map of China. Based on our climate
trend analyses, we produced the trend distribution map
using the geostatistical spatial interpolation method of
universal kriging (refer to Additional file 6: Supplement
B for modeling details) [64], which assumes a third-
order polynomial trend model, i.e., trends in climate
change may be linearly or nonlinearly correlated with
latitude/longitude. Using this climate trend map and the
1970-2000 mean climate as the baseline, we predicted
the temperature and precipitation distributions in China
for 2020, 2050 and 2080, a typical risk projection frame-
work [40, 41]. We compared the projected temperature
increases in 2050 and 2080 between this study and the
GCMs using 2000 as the baseline [41].

We used the suitability models established earlier
to predict the Aedes distribution in each month based
on the 2020, 2050 and 2080 climatic projections. Ae.
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albopictus risk was measured as the probability of pres-
ence of Ae. albopictus.

We estimated the at-risk population for different pro-
jections based on 2010 census data for each county in
China and the 2020 total population [65]. Since there
was no updated population distribution for 2020, we pro-
jected the 2020 population distribution to be the same as
that in 2010. Because projecting the 2050 and 2080 total
populations and population distributions would create
additional uncertainty, i.e., we do not know the future
population movement and growth across China, we used
the 2020 total population as the base population and
fixed it for 2050 and 2080. We were aware of the potential
bias for estimating the future at-risk population based on
the 2020 population, but this was the best method upon
which we could rely. If the total population decreases
by 2050 and 2080, the at-risk population will need to be
adjusted accordingly.

All data analyses were conducted using R 4.2.1 (R Foun-
dation for Statistical Computing, Vienna, Austria) except
universal kriging, which was performed using ArcGIS
Pro 3.0.0 (ESRI Redlands, CA, USA). The following R
packages were used in this study: for raster image reading
and risk mapping, we used the raster and crop methods
within the rasterlmage and sp packages; and for regres-
sion tree modeling, we used the ctree and rpart methods
within the rpart, party, and caret packages.

Results

The impact of climatic variables on Ae. albopictus
prevalence in China

Univariate analyses revealed that wintertime (Novem-
ber—February) mean and maximum temperature were
strongly correlated with Ae. albopictus presence in the
following three months (Yale’s correlation coefficient
ranged from 0.84 to 1.00). October mean and maximum
temperature were also important predictors of Ae. albop-
ictus presence (Yale’s R 0.56—0.94) (Table 1); the results
indicated that the higher the temperature was, the higher
the prevalence (Additional file 2: Fig. S2). The minimum
temperature was moderately associated with Ae. albop-
ictus prevalence (Yale’s R 0.15-0.95) (Table 1; Additional
file 2: Fig. S2). Precipitation was moderately correlated
with Ae. albopictus prevalence during April-September
(Yale’s R 0.15-0.91) (Table 1; Additional file 2: Fig. S2).

Aedes albopictus distribution modeling

Multivariable modeling with tenfold cross-validation
indicated that the models predicted the existing Ae.
albopictus sites with very high accuracy (Fig. 2). The
accuracy of the predictions ranged from 93.2% in May to
99.2% in February. Kappa agreement between observed
and predicted Aedes prevalence ranged from 0.78 for
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June—September to 0.98 in February indicating almost
perfect agreement (>0.80 considered perfect). Sensitivity
ranged from 94.6% (November) to 100% (February), and
specificity ranged from 81.8% (May) to 100% (January)
(Fig. 2).

Variable importance analyses found that winter to early
spring (October—February) temperature were the most
important factors that determined the presence of Ae.
albopictus, and the relative influences of each variable on
Ae. albopictus presence were very similar from December
to March (ranging from 15 to 20%) (Table 2). A greater
number of variables influenced the Ae. albopictus dis-
tribution from April to November and environmental/
climatic zones were only important for determining
June—October Ae. albopictus distribution (Table 2). The
overall total influence of climatic variable in each month
varied from no influence to 82% (Table 3). October to
February temperatures contributed the most (range
19-82%, mean + standard deviation (SD): 44.3 +20.5%),
followed by summertime (June—September) precipitation
(range 10-15%, mean 12.8 +2.2%) (Table 3).

Climate changes from 1970 to 2021

We analyzed changes in monthly temperature and
annual precipitation for the study period. We found
that in general, temperature increases were more pro-
nounced in central and northern China than in the
southern subtropical areas and were greater in spring
(February—April) than in winter (October—Decem-
ber) (Fig. 3). The minimum temperature increased the
most, approximately 3—4 °C, in high-latitude areas in
the north in March, while the maximum temperature
increased by 3—-4 °C across central China from Feb-
ruary to March. The greatest increase in the mean
temperature (4.7 °C in March) was similar to that of
the maximum temperature (4.3 °C in March) but was
more pronounced in the north (Fig. 3). For example,
the average increase in the maximum temperature in
March was 3.5 °C in the north >39°N and 4.1 °C in the
south-central 28—39°N, whereas mean temperature in
March increased 4.5 °C in the north >36°N and 3.5 °C
in the south-central 28—-36°N (Fig. 3). The winter tem-
perature increase was minimal (Fig. 3). In most places
and months, the temperature increased by approxi-
mately 1-2 °C (Fig. 3); however, inter-station varia-
tion was large (Additional file 3: Fig. S3). For example,
in Ejin Qi of Inner Mongolia Autonomous Region,
north of the current Ae. albopictus northern bound-
ary, the minimum temperature increased at least
3 °C in almost all months and more than 5 °C in two
months (Additional file 3: Fig. S3a), while in Datong
in Shanxi Province, which lies just on the Ae. albopic-
tus distribution northern boundary line, the minimum
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Table 1 CHAID univariate analysis of the correlation between climatic variable and Aedes albopictus prevalence

Climatic variable Month Ae. albopictus prevalence by month
Jan Feb Mar Apr May Jun-Sep Oct Nov Dec

Mean temperature Jan 1 0.99 0.94 0.88 0.77

Feb 0.94 0.91 0.85 0.76

Mar 0.88 0.84 0.77

Apr 0.7 0.72

Oct 0.91 0.9 0.63 0.78 0.94

Nov 1 0.92 0.84 0.9 092

Dec 0.95 0.97 0.92 0.88 0.97
Maximum temperature Jan 091 0.89 091 0.85 0.79

Feb 0.85 0.93 0.8 0.74

Mar 0.88 0.68 0.72

Apr 0.59 0.65

Oct 0.92 0.93 0.56 0.7 0.94

Nov 0.94 1 093 0.88 0.92

Dec 0.94 0.95 097 092 0.97
Minimum temperature Jan 0.87 022 0.15 0.29 047

Feb 0.95 0.85 0.88 0.75

Mar 0.79 0.87 0.75

Apr 0.85 0.83

Oct 0.82 0.95 0.57 0.84 0.94

Nov 0.94 0.88 0.85 0.88 0.92

Dec 0.84 0.95 0.84 0.95 0.97
Precipitation Jan 0.16 0.36 0.34 0.79 0.62

Feb 03 0.39 0.91 0.67 0.64

Mar 033 0.7 0.5 0.15

Apr 0.54 0.76 0.83

May 0.7 0.57

Jun-Sep -0.05 0.55 -0.03 0.15 0.16

Oct 0.74 0.54 044 0.58 048

Nov 049 0.26 0.2 0.56 03

Dec 0.2 033 033 0.87 032

Numbers represent Yale's correlation coefficient between Ae. albopictus prevalence and climatic variables by prevalence at different months against climatic variables
at different months. Empty cell means not examined because we assume that climatic effects lag up to four months. Since Ae. albopictus has been detected from June
to September everywhere where it was found, therefore, May to September temperature is assumed to be perfect for Ae. albopictus, thus they were not included in
the analyses

= Accuracy == Kappa - Sensitivity - Specificity temperature decreased by approximately 2 °C in sev-
g 1 eral months (Additional file 3: Fig. S3a). Overall, the
%3 normalized (anomaly) mean temperature showed
£ 0.91 very similar trends in central, western and northern
5 China, i.e., north of (including) Xuzhou (Jiangsu Prov-
% 0.81 ince), Zhengzhou (Henan Province), and Xi’an (Shan-
2 nxi Province) cities, plus Gansu, Xinjiang and Tibet
3 0.7 Province/Autonomous Regions (Fig. 4a), while a few
8 stations in southern China showed almost no change
= 0.6H in the mean temperature from 1970 to 2021 (Fig. 4b).

Jan Feb Mar Apr MayJun-Sep Oct Nov Dec
Month
Fig. 2 Agreement between model predicted and observed Aedes
albopictus presence/absence

The major changes in the mean temperature started
in 1990, i.e., the mean temperature was below nor-
mal before 1990 and above normal after 1990 (Fig. 4c,
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Table 2 Relative influence (RI) of climatic/environmental variables to the prediction of Aedes albopictus presence in different months

Presence in January Presence in February

Presence in March

Presence in April Presence in May

Variables RI Variables RI Variables RI Variables RI Variables RI

Mean temp 10 0.20 Min temp 1 0.17 Max temp 1 0.17 Min temp 2 0.16 Min temp 4 0.17

Mean temp 1 017 Min temp 2 017 Max temp 2 0.17 Mean temp 12 0.16 Min temp 5 0.16

Mean temp 11 0.17 Max temp 11 0.17 Max temp 11 0.16 Min temp 1 0.15 Min temp 3 0.15

Mean temp 12 0.16 Mean temp 1 0.17 Max temp 12 0.18 Min temp 12 0.15 Mean temp 1 0.15

Max temp 1 0.15 Mean temp 2 0.16 Mean temp 1 0.16 Max temp 12 0.15 Mean temp 2 0.15

Max temp 11 0.15 Mean temp 12 0.16 Mean temp 12 0.16 Mean temp 1 0.15 Mean temp 4 0.15
Precip 1 0.02 Max temp 2 0.02
Precip 2 0.02 Max temp 3 0.02
Precip 3 0.02 Max temp 1 0.01
Precip 4 0.01 Mean temp 3 0.01
Precip 12 0.01 Precip 3 0.01

Presence from June to September Presence in October Presence in November  Presence in December

Variables RI Variables RI Variables RI Variables RI Variables RI

Environmental zone 0.21 Mean temp 8 0.02 Mean temp 10 0.17 Mean temp 10 0.17 Min temp 12 0.17

Precip 6 0.12 Max temp 6 0.01 Min temp 10 0.16 Min temp 10 0.16 Max temp 11 0.17

Precip 4 0.1 Max temp 7 0.01 Min temp 9 0.15 Min temp 9 0.15 Mean temp 11 0.17

Precip 5 0.1 Max temp 8 0.01 Max temp 10 0.15 Mean temp 9 0.15 Mean temp 12 0.17

Precip 7 0.1 Precip 3 0.01 Mean temp 9 0.15 Min temp 5 0.14 Max temp 12 0.16

Climatic zone 0.09 Precip 8 0.01 Min temp 5 0.14 Max temp 10 0.14 Mean temp 10 0.16

Min temp 6 0.04 Precip 4 0.02 Precip 4 0.02

Mean temp 6 0.04 Min temp 8 0.01 Precip 10 0.02

Min temp 5 0.03 Max temp 9 0.01 Min temp 8 0.01

Min temp 8 0.03 Precip 5 0.01 Max temp 9 0.01

Mean temp 5 0.03 Precip 6 0.01 Precip 5 0.01

Mean temp 4 0.02 Precip 9 0.01 Precip 6 0.01

Mean temp 7 0.02 Climatic zone 0.01 Precip 9 0.01

Variable names - “Max temp” represents maximum temperature; “Min temp” represents minimum temperature; and “Mean temp” represents mean temperature.
Numbers following variable names represent months, i.e., 1-12 represent January to December. Total relative influence (RI) for each month is 1

d). The trends were very similar for southern (mean
increase of 0.0432 °C/year, R*=0.72) and northern
(mean increase of 0.0436 °C/year, R®=0.71) China
(Fig. 4c, d).

Monthly precipitation varied greatly, and we did
not find consistent trends (results not shown). How-
ever, analysis of annual precipitation found that over-
all precipitation increased > 100 mm during the study
period in most regions (Fig. 3d). Similar to tempera-
ture, trends in precipitation varied greatly among
stations (Additional file 3: Fig. S3b). For example, in
Beijing, although annual precipitation increased in
the past two decades, the overall change in precipita-
tion from 1970 to 2021 was nearly zero (annual change
rate — 0.162 mm); however, in many other places, pre-
cipitation increased considerably in the past 10 years
(Additional file 3: Fig. S3b).

Projection of future climatic conditions and distribution
of Ae. albopictus
Despite variations, the observed annual temperature
anomaly showed a clear linear increase from 1970 to
2021 (Temperature=0.0434, Year—86.146, R’=0.71)
(Fig. 4). Based on the linear regression model, we pre-
dicted that the mean temperature will increase approxi-
mately 2.17 °C (range 1.88-2.46 °C) in China by 2050
from the 2000 baseline, compared to the GCM predic-
tion of 0.98-1.36 °C increase globally by 2050 [47], i.e.,
GCMs underestimated approximately 1 °C increase in
temperature. Similarly, we predicted a 3.47 °C (range
3.10-3.93 °C) increase in the mean temperature by 2080
based on meteorological observations, while GCMs pre-
dicted 1.06-2.39 °C increase by 2080 [47].

Figure 4 shows the estimated baseline (2000) distri-
bution of the Ae. albopictus in China, the updated cur-
rent distribution (2020), and the projected distributions
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Table 3 The overall relative influence (RI) of climatic/environmental variables in each month to the presence of Aedes albopictus

Month Minimum temperature Mean temperature Maximum temperature Precipitation
January 0.32 0.8 0.34 0.02
February 0.33 0.31 0.19 0.02
March 0.15 0.01 0.02 0.04
April 0.17 0.17 0.15
May 0.47 0.03 0.12
June 0.04 0.04 0.01 0.14
July 0.02 0.01 0.1
August 0.05 0.02 0.01 0.01
September 0.3 0.3 0.02 0.02
October 0.32 0.66 0.29 0.02
November 0.35 0.66

December 0.32 0.82 0.49 0.01
Environment and climate zone RI

Climatic zone 0.1

Environmental zone 0.21

The total Rl was 9.0 representing the nine study months. Empty cell means insignificant and numbers with bold font represent contributions > 20%

Latitude a. Minimum temperature (°C)
> 45°N
42° — 45°N
39°-42°N
36°-29°N
B =5 IN
307 =33°N
28°-30°N
25°-28°N
< 25°N

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
b. Maximum temperature (°C)

> 45°N
42° - 45°N
39°-42°N
36°-29°N
33°-36°N
30°-33°N
28° - 30°N
25°-28°N

< 25°N

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Latitude
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42° — 45°N
39° - 42°N
36° - 29°N
33°-36°N
30° - 33°N
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25° - 28°N
< 25°N

c. Mean temperature (°C)
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d. Annual rainfall (mm)
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<0
0-100
100 — 200 1-2
200 - 300 2-3

300 -400 3-4
> 400 >4

Temperature
°C)
<0
0-1

Fig. 3 Changes in monthly temperature and annual precipitation by latitude

for 2050 and 2080 based on predicted climate changes
(Additional file 4: Fig. S4, Additional file 5: Fig. S5). The
major changes in the Ae. albopictus distribution from
2000 to 2020 were the slight expansion in north-central
and northeastern China in April and May (Fig. 5a, b).
However, major changes in the Ae. albopictus distribu-
tion were projected for April-November by 2050 and
2080 (Fig. 5¢, d). Currently, Ae. albopictus distribution is

limited to north-central and a small portion of northeast-
ern China; by 2050, if the current trend in climate change
continues, Ae. albopictus may be found in most parts of
northern China, mostly in the summer (June—Septem-
ber) and possibly in April, May, and October (Fig. 5¢, d).
Expansion in the Ae. albopictus distribution in the win-
ter (December—February) was limited, even for 2050 and
2080 (Fig. 5¢, d).
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a. North China climate trend by station
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b. South China climate trend by station

Temperature departure (°C)

-4

1970 1980 1990 2000 2010
c. North China climate trend: average

2020

-4
1970 1980 1990 2000 2010

d. South China climate trend: average

2020

Temperature departure (°C)

1970
Fig. 4 Monthly mean temperature anomaly in different places (top panel) and overall mean (4 standard deviation, bottom panel) in central and
northern China (left panel) and in southern China (right panel)

1980 1990 2000 2010

After consideration of the conditions for vector
development and dengue virus growth (replication),
and in consideration of current dengue outbreak areas
in China, we estimated a population of approximately
960 million at risk of Ae. albopictus in 2020. Based on
the 2020 total population in China and the population
distribution from the 2010 census, we estimated that
the at-risk population will increase to approximately 1.2
billion by 2050, with 1.02 billion at high risk (risk prob-
ability > 0.5), which covers south China to the west up
to Yunnan and Sichuan provinces, to the north up to
southern parts of Hebei, Shanxi and Shannxi provinces,
and an additional 180 million at moderate to low risk
(risk probability <0.5), which includes a small part of
southern Gansu Province, northern parts of Shanxi and
Hebei provinces, Liaoning Province and southeastern
Inner Mongolia Autonomous Region (Fig. 5). The risk
maps for 2080 are similar to those for 2050 (Fig. 5). We
must note that our estimates of the at-risk population
were based on current census data (2010 distribution
and 2020 total population) and did not include pos-
sible future increases/decreases in total population or
changes in the population distribution.

2020

1970 1980 1990 2000 2010 2020

Discussion

Many studies have predicted future distributions of Aedes
mosquitoes and risks of dengue, including regional- and
global-level predictions, based on GCMs of different cli-
mate change scenarios [40, 41, 43—46]. Since different
models yield quite different results, it is difficult to assess
the uncertainty of the predictions and to validate the
modeling results. A study of climate change in the Arctic
found that the actual increase in temperature from 1979
to 2021 was 4 times of that predicted by climate model
[48], indicating the uncertainty of GCM predictions and
the importance of observational data. To our knowl-
edge, this is the first study to use actual observed climate
trends to predict the future distribution of dengue risks
worldwide. We found strong trends (measured by linear
regression and correlation coefficient) in climate warm-
ing across nearly all meteorological observations in
China, which makes our climate change predictions reli-
able if the current trend holds; the fixed annual change
rates are similar to the assumptions for the climate
models [47], but our predictions are supported by over
50 years of observations. We found that the tempera-
ture increased the most from February to April. We also
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¢.2050 d.2080

Fig. 5 Model estimated baseline distribution of Aedes albopictus in 2000 (a) and projected probability distribution of Ae. albopictus in different

months/seasons in 2020 (b), 2050 (c), and 2080 (d)

found strong correlations between the prevalence of Ae.
albopictus and observed winter to early spring tempera-
ture, the months with the greatest temperature increase,
indicating that the warming temperature may have major
impact on the northward expansion of the Ae. albopictus

distribution. The projected temperatures in 2050 and
2080 in this study were approximately 1-1.5 °C higher
than those projected by GCMs. Our model predicted
that Ae. albopictus risk will expand to nearly all popu-
lated areas in China and the risk season will expand from
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June—September to April-October by 2050, likely due to
the substantial increase in temperature from February to
April. We estimated that the current population at risk of
Ae. albopictus in China is approximately 960 million, or
approximately 68% of the total population, and will reach
1.2 billion or approximately85% of the current population
by 2050.

Dengue outbreaks in China have been reported in
Shandong, Henan, and Chongqing provinces [19-21, 32,
54], which are not far from the current known north-
ern Ae. albopictus distribution boundary [33], indicat-
ing that the risk of dengue outbreaks can reasonably be
predicted by the distribution of the vector mosquito Ae.
albopictus. Since Ae. albopictus is nearly the sole vec-
tor for recent dengue outbreaks in China [28, 29], the
observed dengue outbreaks in northern China also dem-
onstrate the urgency for updated Ae. albopictus surveil-
lance in northern China, which is currently not available
[28, 29, 50-52]. The increase in temperature in northern
China warrants the need to use observed climate changes
to examine the impact of these changes on dengue out-
break risks, both in China and worldwide. Given the wide
distribution of imported dengue cases all over China [29,
66], our study is a timely example of such an approach,
and our results show the power of using observed mete-
orological records for predicting future dengue outbreak
risks.

Incidentally, it is interesting to note that Aedes species
other than Ae. albopictus have also been observed in
China. The known major dengue vector Ae. aegypti has
been reported in Yunnan in southwestern China bor-
dering Myanmar [53, 67], where dengue outbreaks have
been reported. Ae. albopictus has also been reported
in the same area [53]. Our model predicted very high
risk of dengue outbreaks in Yunnan Province nearly
year-round in the China-Myanmar border area. Aedes
vexans has been reported from Heilongjiang Province
[56], a northeastern province bordering the Demo-
cratic People’s Republic of Korea, Russia and Mongo-
lia, far north of the current Ae. albopictus northern
boundary. In addition, Ae. caspius and Ae. flavidorsa-
lis have been reported in central Qinghai Province, the
core area of the Qinghai-Tibet Plateau [55, 68]. Culex
and Anopheles mosquitoes have also been reported in
these places [68]. The vector status of these Aedes mos-
quitoes is unknown, as is the impact of climate change
on the distribution and vector status of these Aedes
mosquitoes. Furthermore, Culex pipiens pipiens, Culex
pipiens pallens, Culex pipiens quinquefasciatus and its
hybrids have in recent years established populations in
Lhasa city, Tibet Autonomous Region, 3700 m above
sea level [69]; whether they can transmit diseases is
unknown. However, malaria and malaria vectors have
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been reported in Motuo County, Tibet [70, 71], indicat-
ing the possibility of pathogen transmission at high alti-
tudes, and climate change may enhance or support the
transmission of pathogens in the highlands.

There are several limitations to this study. Although
validation analysis showed that our model had high
power to predict the observed presence of Ae. albop-
ictus, the suitability model predicted the potential dis-
tribution of Ae. albopictus in the Taklamakan Desert
area of southwestern Xinjiang in northwestern China,
which is likely due to the lack of Ae. albopictus surveil-
lance data and the sparse distribution of meteorological
records in the area; the predicted future climate in this
area was likely biased by the use of ground observations
from other stations. In this context, mosquito surveil-
lance should be enhanced by setting up more monitor-
ing stations in western and northeastern China (see
Fig. 1), and better surveillance coverage may improve
the power of model predictions and capture the poten-
tially newly invaded areas by Ae. albopictus in China.
Some dengue risk models have used human population
density as an independent risk predictor [9, 72, 73],
which may reduce the uncertainty of model predic-
tions; since the desert is a no-man’s land, the dengue
risk will be zero. In this study, we used only climatic
and environmental data [33]; therefore, we only pre-
dicted the climate suitability for dengue transmission.
On the other hand, the environmental variables already
included humid, sub-humid, semiarid, and arid regions
as an independent variables [33], so the predicted suit-
ability in the desert area is likely due to the lack of Ae.
albopictus surveillance data from arid areas. In addi-
tion, adding the human population as a variable may
not have a major impact on the overall results, because
population density is high in northeastern China but
no Ae. albopictus has been detected in the area, likely
due to the low temperature. Since future trends in cli-
mate change may not be the same as those in the last
50 years, we cannot necessarily assume a fixed trend,
i.e,, the prediction of future climate change has uncer-
tainty. However, most if not all climate models use the
fixed emission assumption over time, although they
allow for different emissions scenarios [40, 41, 43].
Since we used observed climatic data, the projected dis-
tribution of Ae. albopictus can be adjusted or the model
calibrated when future data are updated; this may be a
viable solution to address the uncertainty of future cli-
mate change. Finally, in addition to the uncertainty in
future global climate change, future population growth
in China is also uncertain especially by 2050 and
beyond, recent birth/death records show a substantial
downward trend in population growth in China. Since
it is difficult to predict both the future population trend
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in China and population movement (thus population
distribution), therefore there is an uncertainty for the
prediction of future at-risk populations.

Conclusions

Dengue outbreaks have intensified in temperate northern
China, in addition to the near endemic status of dengue
in southern China. Climate change has also intensified in
the past 50 years [74]. Ae. albopictus is rapidly expanding
its distribution [41, 75, 76]. This expanded distribution,
fueled by increased temperatures, will likely enhance
dengue transmission especially in high-latitude and high-
altitude areas, as observed from field vector surveillance.
Dengue outbreaks, an old threat, have become a new
challenge for future prevention and control efforts in
the era of climate change. A climate-based early warning
system is urgently needed so that risks can be assessed
in a timely manner to support preparedness for future
outbreaks.
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